Liang Li, Haikun Li, Ke Zhang, Chunchun Zhao, Fei Wang, Jian Sun, Jianqing Wang
{"title":"The role and mechanism of hepatocyte nuclear factor 1β in the occurrence and development of different human tumors: A pan-cancer analysis.","authors":"Liang Li, Haikun Li, Ke Zhang, Chunchun Zhao, Fei Wang, Jian Sun, Jianqing Wang","doi":"10.1002/tox.24254","DOIUrl":null,"url":null,"abstract":"<p><p>Carcinomatosis is one of the leading threats to human public fitness. HNF1B is a critical transcription element in vertebrate proliferation and oncogenesis, which has been shown to play roles in reactive oxygen species (ROS) metabolism. Our previous results have identified HNF1B as a tumor suppressor that could inhibit the malignant progression of prostate cancer. Yet there is no pan-carcinomatosis analysis of HNF1B, which could help us better understand common and unique underlying mechanisms in mankind knubs to enhance novel and competent treatment. Here, in our research, we evaluated the utterance pattern and explored the function of HNF1B in 33 knub categories using the data from the Cancer Genome Atlas Program (TCGA), Gene Expression Omnibus (GEO), and CLNICAL PROTEOMICTUMOR ANALYSIS CONSORTIUM (CPTAC) dataset. We found different HNF1B roles in various cancer types. HNF1B was upregulated in CHOL, STAD, KIRP, and THCA, and was downregulated in GBM, KICH, COAD, KIRC, LUSC, SARC, PAAD, and TGCT. Prognostic analyses indicated that higher HNF1B displayed better illness outcomes in BLCA, READ, and PRAD, while poorer outcomes in LUSC and THYM. HNF1B mutation was most frequent in endometrial cancer but was not associated with disease prognosis. It was discovered that HNF1B utterance relevant to endothelial cell penetration status in BLCA, ESCA, LUAD, LUSC, and TGCT, and carcinomatosis-associated fibroblast infiltration was observed in ESCA, KIRC, LIHC, and TGCT. Moreover, functional enrichment analysis disclosed that metabolism-related functions were implicated in the function of HNF1B. Taken together, our pan- carcinomatosis analysis showed the complicated roles of HNF1B in a variety of carcinomatoses, being able to improve the extensive comprehension of HNF1B's role in tumorigenesis.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/tox.24254","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Carcinomatosis is one of the leading threats to human public fitness. HNF1B is a critical transcription element in vertebrate proliferation and oncogenesis, which has been shown to play roles in reactive oxygen species (ROS) metabolism. Our previous results have identified HNF1B as a tumor suppressor that could inhibit the malignant progression of prostate cancer. Yet there is no pan-carcinomatosis analysis of HNF1B, which could help us better understand common and unique underlying mechanisms in mankind knubs to enhance novel and competent treatment. Here, in our research, we evaluated the utterance pattern and explored the function of HNF1B in 33 knub categories using the data from the Cancer Genome Atlas Program (TCGA), Gene Expression Omnibus (GEO), and CLNICAL PROTEOMICTUMOR ANALYSIS CONSORTIUM (CPTAC) dataset. We found different HNF1B roles in various cancer types. HNF1B was upregulated in CHOL, STAD, KIRP, and THCA, and was downregulated in GBM, KICH, COAD, KIRC, LUSC, SARC, PAAD, and TGCT. Prognostic analyses indicated that higher HNF1B displayed better illness outcomes in BLCA, READ, and PRAD, while poorer outcomes in LUSC and THYM. HNF1B mutation was most frequent in endometrial cancer but was not associated with disease prognosis. It was discovered that HNF1B utterance relevant to endothelial cell penetration status in BLCA, ESCA, LUAD, LUSC, and TGCT, and carcinomatosis-associated fibroblast infiltration was observed in ESCA, KIRC, LIHC, and TGCT. Moreover, functional enrichment analysis disclosed that metabolism-related functions were implicated in the function of HNF1B. Taken together, our pan- carcinomatosis analysis showed the complicated roles of HNF1B in a variety of carcinomatoses, being able to improve the extensive comprehension of HNF1B's role in tumorigenesis.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.