Adaptive Laboratory Evolution Uncovers Potential Role of a DNA Helicase Mutation in Torulaspora delbrueckii Increased Sulphite Resistance

IF 4.3 2区 生物学 Q2 MICROBIOLOGY
Carolina Osório, Ticiana Fernandes, Teresa Rito, Pedro Soares, Ricardo Franco-Duarte, Maria João Sousa
{"title":"Adaptive Laboratory Evolution Uncovers Potential Role of a DNA Helicase Mutation in Torulaspora delbrueckii Increased Sulphite Resistance","authors":"Carolina Osório,&nbsp;Ticiana Fernandes,&nbsp;Teresa Rito,&nbsp;Pedro Soares,&nbsp;Ricardo Franco-Duarte,&nbsp;Maria João Sousa","doi":"10.1111/1462-2920.70038","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Wine industry has faced pressure to innovate its products. <i>Saccharomyces cerevisiae</i> has been the traditional yeast for producing alcoholic beverages, but interest has shifted from the conventional <i>S. cerevisiae</i> to non-<i>Saccharomyces</i> yeasts for their biotechnological potential. Among these, <i>Torulaspora delbrueckii</i> is particularly notable for its ability to enrich wine with novel flavours. During winemaking, sulphites are added to suppress spoilage microorganisms, making sulphite tolerance a valuable characteristic of wine yeasts. Adaptive laboratory evolution in liquid and solid media improved sulphite resistance in two <i>T. delbrueckii</i> strains, achieving, in the best case, a fourfold increase from 0.50 to 2.00 mM of sodium metabisulphite, highlighting the potential of these evolve strains for winemaking applications. Genomic analysis revealed SNPs/InDels in all the strains, including a novel unique missense mutation common to the four evolved isolates, but absent from the parental strains, located in chromosome VIII (protein TDEL0H03170, homologue of <i>S. cerevisiae</i> <i>MPH1</i>). These genes code for a protein catalogued as an ATP-dependent DNA helicase, known for its role in maintaining genome stability by participating in DNA repair pathways. We propose that this valine-to-serine mutation, common to all the evolved isolates, helps the evolved strains repair sulphite-induced DNA damage more effectively.</p>\n </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70038","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Wine industry has faced pressure to innovate its products. Saccharomyces cerevisiae has been the traditional yeast for producing alcoholic beverages, but interest has shifted from the conventional S. cerevisiae to non-Saccharomyces yeasts for their biotechnological potential. Among these, Torulaspora delbrueckii is particularly notable for its ability to enrich wine with novel flavours. During winemaking, sulphites are added to suppress spoilage microorganisms, making sulphite tolerance a valuable characteristic of wine yeasts. Adaptive laboratory evolution in liquid and solid media improved sulphite resistance in two T. delbrueckii strains, achieving, in the best case, a fourfold increase from 0.50 to 2.00 mM of sodium metabisulphite, highlighting the potential of these evolve strains for winemaking applications. Genomic analysis revealed SNPs/InDels in all the strains, including a novel unique missense mutation common to the four evolved isolates, but absent from the parental strains, located in chromosome VIII (protein TDEL0H03170, homologue of S. cerevisiae MPH1). These genes code for a protein catalogued as an ATP-dependent DNA helicase, known for its role in maintaining genome stability by participating in DNA repair pathways. We propose that this valine-to-serine mutation, common to all the evolved isolates, helps the evolved strains repair sulphite-induced DNA damage more effectively.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信