Caspar Geenen, Steven Traets, Sarah Gorissen, Michiel Happaerts, Kurt Beuselinck, Lies Laenen, Jens Swinnen, Sien Ombelet, Joren Raymenants, Els Keyaerts, Emmanuel André
{"title":"Interpretation of indoor air surveillance for respiratory infections: a prospective longitudinal observational study in a childcare setting.","authors":"Caspar Geenen, Steven Traets, Sarah Gorissen, Michiel Happaerts, Kurt Beuselinck, Lies Laenen, Jens Swinnen, Sien Ombelet, Joren Raymenants, Els Keyaerts, Emmanuel André","doi":"10.1016/j.ebiom.2024.105512","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sampling the air in indoor congregate settings, where respiratory pathogens are ubiquitous, may constitute a valuable yet underutilised data source for community-wide surveillance of respiratory infections. However, there is a lack of research comparing air sampling and individual sampling of attendees. Therefore, it remains unclear how air sampling results should be interpreted for the purpose of surveillance.</p><p><strong>Methods: </strong>In this prospective observational study, we compared the presence and concentration of several respiratory pathogens in the air with the number of attendees with infections and the pathogen load in their nasal mucus. Weekly for 22 consecutive weeks, we sampled the air in a single childcare setting in Belgium. Concurrently, we collected the paper tissues used to wipe the noses of 23 regular attendees: children aged zero to three and childcare workers. All samples were tested for 29 respiratory pathogens using PCR.</p><p><strong>Findings: </strong>Air sampling sensitively detected most respiratory pathogens found in nasal mucus. Some pathogens (SARS-CoV-2, Pneumocystis jirovecii) were found repeatedly in the air, but rarely in nasal mucus, whilst the opposite was true for others (Human coronavirus NL63). All three pathogens with a clear outbreak pattern (Human coronavirus HKU-1, human parainfluenza virus 3 and 4) were found in the air one week before or concurrent with the first detection in paper tissue samples. The presence and concentration of pathogens in the air was best predicted by the pathogen load of the most infectious case. However, air pathogen concentrations also correlated with the number of attendees with infections. Detection and concentration in the air were associated with CO<sub>2</sub> concentration, a marker of ventilation and occupancy.</p><p><strong>Interpretation: </strong>Our results suggest that air sampling could provide sensitive, responsive epidemiological indicators for the surveillance of respiratory pathogens. Using air CO<sub>2</sub> concentrations to normalise such signals emerges as a promising approach.</p><p><strong>Funding: </strong>KU Leuven; DURABLE project, under the EU4Health Programme of the European Commission; Thermo Fisher Scientific.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"112 ","pages":"105512"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830284/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105512","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sampling the air in indoor congregate settings, where respiratory pathogens are ubiquitous, may constitute a valuable yet underutilised data source for community-wide surveillance of respiratory infections. However, there is a lack of research comparing air sampling and individual sampling of attendees. Therefore, it remains unclear how air sampling results should be interpreted for the purpose of surveillance.
Methods: In this prospective observational study, we compared the presence and concentration of several respiratory pathogens in the air with the number of attendees with infections and the pathogen load in their nasal mucus. Weekly for 22 consecutive weeks, we sampled the air in a single childcare setting in Belgium. Concurrently, we collected the paper tissues used to wipe the noses of 23 regular attendees: children aged zero to three and childcare workers. All samples were tested for 29 respiratory pathogens using PCR.
Findings: Air sampling sensitively detected most respiratory pathogens found in nasal mucus. Some pathogens (SARS-CoV-2, Pneumocystis jirovecii) were found repeatedly in the air, but rarely in nasal mucus, whilst the opposite was true for others (Human coronavirus NL63). All three pathogens with a clear outbreak pattern (Human coronavirus HKU-1, human parainfluenza virus 3 and 4) were found in the air one week before or concurrent with the first detection in paper tissue samples. The presence and concentration of pathogens in the air was best predicted by the pathogen load of the most infectious case. However, air pathogen concentrations also correlated with the number of attendees with infections. Detection and concentration in the air were associated with CO2 concentration, a marker of ventilation and occupancy.
Interpretation: Our results suggest that air sampling could provide sensitive, responsive epidemiological indicators for the surveillance of respiratory pathogens. Using air CO2 concentrations to normalise such signals emerges as a promising approach.
Funding: KU Leuven; DURABLE project, under the EU4Health Programme of the European Commission; Thermo Fisher Scientific.
EBioMedicineBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍:
eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.