M A T Verhaeg, E M van der Pijl, D van de Vijver, C L Tanganyika-de Winter, T L Stan, A van Uffelen, L Censoni, M van Putten
{"title":"Behavioral characterization of the mdx5cv, mdx52 and DMD-null mouse models of Duchenne muscular dystrophy.","authors":"M A T Verhaeg, E M van der Pijl, D van de Vijver, C L Tanganyika-de Winter, T L Stan, A van Uffelen, L Censoni, M van Putten","doi":"10.1242/dmm.052047","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy is a severe neuromuscular disorder, caused by mutations in the DMD gene. Normally, the DMD gene gives rise to multiple dystrophin isoforms, of which multiple are expressed in the brain. The location of the mutation determines the number of dystrophin isoforms affected, and the absence thereof leads to behavioral and cognitive impairments. Even though behavioral studies have thoroughly investigated the effects of the loss of Dp427, and to a lesser extend of Dp140, in mice, direct comparisons between models lacking multiple dystrophin isoforms are sparse. Furthermore, a behavioral characterization of the DMD-null mouse, which lacks all dystrophin isoforms, has never been undertaken. Using a wide variety of behavioral tests, we directly compared impairments between mdx5cv, mdx52 and DMD-null mice. We confirmed the role of Dp427 in emotional reactivity. We did not find any added effects of loss of Dp140 on fear, but showed the involvement of Dp140 in spontaneous behavior, specifically in habituation and activity changes due to light/dark switches. Lastly, Dp71/Dp40 seems to play an important role in many behavioral domains, including anxiety and spontaneous behavior.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052047","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Duchenne muscular dystrophy is a severe neuromuscular disorder, caused by mutations in the DMD gene. Normally, the DMD gene gives rise to multiple dystrophin isoforms, of which multiple are expressed in the brain. The location of the mutation determines the number of dystrophin isoforms affected, and the absence thereof leads to behavioral and cognitive impairments. Even though behavioral studies have thoroughly investigated the effects of the loss of Dp427, and to a lesser extend of Dp140, in mice, direct comparisons between models lacking multiple dystrophin isoforms are sparse. Furthermore, a behavioral characterization of the DMD-null mouse, which lacks all dystrophin isoforms, has never been undertaken. Using a wide variety of behavioral tests, we directly compared impairments between mdx5cv, mdx52 and DMD-null mice. We confirmed the role of Dp427 in emotional reactivity. We did not find any added effects of loss of Dp140 on fear, but showed the involvement of Dp140 in spontaneous behavior, specifically in habituation and activity changes due to light/dark switches. Lastly, Dp71/Dp40 seems to play an important role in many behavioral domains, including anxiety and spontaneous behavior.
期刊介绍:
Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.