Forsythiaside A Ameliorates Inflammation by Regulating the Autophagy in Methotrexate-induced Intestinal Mucositis.

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Wuying Lang, Jiayi Zhang, Xuejun Xiao, Min Cheng, Xin Zheng, Haizhou Gong, Ihsan Ali, Yongping Zhao, Feng Jia, Zhe Wang, Jing Wang, Wei Li, Haihua Zhang
{"title":"Forsythiaside A Ameliorates Inflammation by Regulating the Autophagy in Methotrexate-induced Intestinal Mucositis.","authors":"Wuying Lang, Jiayi Zhang, Xuejun Xiao, Min Cheng, Xin Zheng, Haizhou Gong, Ihsan Ali, Yongping Zhao, Feng Jia, Zhe Wang, Jing Wang, Wei Li, Haihua Zhang","doi":"10.2174/0113862073324564241211064620","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Methotrexate (MTX) effectively eliminates cancerous cells but can also cause inflammation intestinal, known as mucositis. Forsythiaside A (FTA) from Forsythia suspensa has shown promise in relieving mucositis by targeting the NLRP3 pathways. Since NLRP3 inflammasome activation is negatively regulated by autophagy, this study explores how FTAmediated autophagy affects NLRP3 inflammasome in treating MTX-induced intestinal inflammation.</p><p><strong>Methods: </strong>Intestinal mucositis was induced in rats with MTX. FTA's impact was assessed using HE staining and ELISA. The mechanism was studied using immunofluorescence, western blot, and ELISA.</p><p><strong>Results: </strong>FTA treatment resulted in reduced levels of D-lactic acid and diamine oxidase (DAO) in MTX-treated rats. Western blot and immunofluorescence analyses revealed up-regulation of Beclin- 1 and LC3II/I, accumulation of LC3, and down-regulation of p62 expression levels in MTXtreated rats following 40 or 80 mg/kg FTA intervention. However, when the autophagy inhibitor 3-MA was used, the intestinal pathology was exacerbated, the inflammatory scores increased, and serum levels of TNF-α, IL-1β, and IL-18 were elevated. Western blotting indicated decreased LC3II/I expression, while NLRP3, cleaved caspase 1, and cleaved IL-1β expressions were upregulated.</p><p><strong>Conclusion: </strong>These findings suggested that FTA alleviated MTX-treated intestinal mucositis by activating autophagy, which in turn inhibits the NLRP3 inflammasome.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073324564241211064620","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Methotrexate (MTX) effectively eliminates cancerous cells but can also cause inflammation intestinal, known as mucositis. Forsythiaside A (FTA) from Forsythia suspensa has shown promise in relieving mucositis by targeting the NLRP3 pathways. Since NLRP3 inflammasome activation is negatively regulated by autophagy, this study explores how FTAmediated autophagy affects NLRP3 inflammasome in treating MTX-induced intestinal inflammation.

Methods: Intestinal mucositis was induced in rats with MTX. FTA's impact was assessed using HE staining and ELISA. The mechanism was studied using immunofluorescence, western blot, and ELISA.

Results: FTA treatment resulted in reduced levels of D-lactic acid and diamine oxidase (DAO) in MTX-treated rats. Western blot and immunofluorescence analyses revealed up-regulation of Beclin- 1 and LC3II/I, accumulation of LC3, and down-regulation of p62 expression levels in MTXtreated rats following 40 or 80 mg/kg FTA intervention. However, when the autophagy inhibitor 3-MA was used, the intestinal pathology was exacerbated, the inflammatory scores increased, and serum levels of TNF-α, IL-1β, and IL-18 were elevated. Western blotting indicated decreased LC3II/I expression, while NLRP3, cleaved caspase 1, and cleaved IL-1β expressions were upregulated.

Conclusion: These findings suggested that FTA alleviated MTX-treated intestinal mucositis by activating autophagy, which in turn inhibits the NLRP3 inflammasome.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
327
审稿时长
7.5 months
期刊介绍: Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal: Target identification and validation Assay design, development, miniaturization and comparison High throughput/high content/in silico screening and associated technologies Label-free detection technologies and applications Stem cell technologies Biomarkers ADMET/PK/PD methodologies and screening Probe discovery and development, hit to lead optimization Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries) Chemical library design and chemical diversity Chemo/bio-informatics, data mining Compound management Pharmacognosy Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products) Natural Product Analytical Studies Bipharmaceutical studies of Natural products Drug repurposing Data management and statistical analysis Laboratory automation, robotics, microfluidics, signal detection technologies Current & Future Institutional Research Profile Technology transfer, legal and licensing issues Patents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信