The atypical proteome of mitochondria from mature pollen grains.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Clément Boussardon, Matthieu Simon, Chris Carrie, Matthew Fuszard, Etienne H Meyer, Françoise Budar, Olivier Keech
{"title":"The atypical proteome of mitochondria from mature pollen grains.","authors":"Clément Boussardon, Matthieu Simon, Chris Carrie, Matthew Fuszard, Etienne H Meyer, Françoise Budar, Olivier Keech","doi":"10.1016/j.cub.2024.12.037","DOIUrl":null,"url":null,"abstract":"<p><p>To propagate their genetic material, flowering plants rely on the production of large amounts of pollen grains that are capable of germinating on a compatible stigma. Pollen germination and pollen tube growth are thought to be extremely energy-demanding processes. This raises the question of whether mitochondria from pollen grains are specifically tuned to support this developmental process. To address this question, we isolated mitochondria from both mature pollen and floral buds using the isolation of mitochondria tagged in specific cell-type (IMTACT) strategy and examined their respective proteomes. Strikingly, mitochondria from mature pollen grains have lost many proteins required for genome maintenance, gene expression, and translation. Conversely, a significant accumulation of proteins associated with the tricarboxylic acid (TCA) cycle, the electron transport chain (ETC), and Ca<sup>2+</sup> homeostasis was observed. This supports the current model in which pollen requires large quantities of ATP for tube growth but also identifies an unexpected depletion of the gene expression machinery, aligned with the fact that the mitochondrial genome is actively degraded during pollen maturation. Altogether, our results uncover that mitochondria from mature pollen grains are strategically prepared for action by increasing their respiratory capacity and dismantling their gene expression machinery, which raises new questions about the assembly of respiratory complexes in pollen mitochondria, as they rely on the integration of proteins coded by the nuclear and mitochondrial genomes. In addition, the approach described here opens a new range of possibilities for studying mitochondria during pollen development and in pollen-specific mitochondrial events.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.12.037","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To propagate their genetic material, flowering plants rely on the production of large amounts of pollen grains that are capable of germinating on a compatible stigma. Pollen germination and pollen tube growth are thought to be extremely energy-demanding processes. This raises the question of whether mitochondria from pollen grains are specifically tuned to support this developmental process. To address this question, we isolated mitochondria from both mature pollen and floral buds using the isolation of mitochondria tagged in specific cell-type (IMTACT) strategy and examined their respective proteomes. Strikingly, mitochondria from mature pollen grains have lost many proteins required for genome maintenance, gene expression, and translation. Conversely, a significant accumulation of proteins associated with the tricarboxylic acid (TCA) cycle, the electron transport chain (ETC), and Ca2+ homeostasis was observed. This supports the current model in which pollen requires large quantities of ATP for tube growth but also identifies an unexpected depletion of the gene expression machinery, aligned with the fact that the mitochondrial genome is actively degraded during pollen maturation. Altogether, our results uncover that mitochondria from mature pollen grains are strategically prepared for action by increasing their respiratory capacity and dismantling their gene expression machinery, which raises new questions about the assembly of respiratory complexes in pollen mitochondria, as they rely on the integration of proteins coded by the nuclear and mitochondrial genomes. In addition, the approach described here opens a new range of possibilities for studying mitochondria during pollen development and in pollen-specific mitochondrial events.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信