Deep Learning-Powered CT-Less Multitracer Organ Segmentation From PET Images: A Solution for Unreliable CT Segmentation in PET/CT Imaging.

IF 9.6 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yazdan Salimi, Zahra Mansouri, Isaac Shiri, Ismini Mainta, Habib Zaidi
{"title":"Deep Learning-Powered CT-Less Multitracer Organ Segmentation From PET Images: A Solution for Unreliable CT Segmentation in PET/CT Imaging.","authors":"Yazdan Salimi, Zahra Mansouri, Isaac Shiri, Ismini Mainta, Habib Zaidi","doi":"10.1097/RLU.0000000000005685","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The common approach for organ segmentation in hybrid imaging relies on coregistered CT (CTAC) images. This method, however, presents several limitations in real clinical workflows where mismatch between PET and CT images are very common. Moreover, low-dose CTAC images have poor quality, thus challenging the segmentation task. Recent advances in CT-less PET imaging further highlight the necessity for an effective PET organ segmentation pipeline that does not rely on CT images. Therefore, the goal of this study was to develop a CT-less multitracer PET segmentation framework.</p><p><strong>Patients and methods: </strong>We collected 2062 PET/CT images from multiple scanners. The patients were injected with either 18F-FDG (1487) or 68Ga-PSMA (575). PET/CT images with any kind of mismatch between PET and CT images were detected through visual assessment and excluded from our study. Multiple organs were delineated on CT components using previously trained in-house developed nnU-Net models. The segmentation masks were resampled to coregistered PET images and used to train 4 different deep learning models using different images as input, including noncorrected PET (PET-NC) and attenuation and scatter-corrected PET (PET-ASC) for 18F-FDG (tasks 1 and 2, respectively using 22 organs) and PET-NC and PET-ASC for 68Ga tracers (tasks 3 and 4, respectively, using 15 organs). The models' performance was evaluated in terms of Dice coefficient, Jaccard index, and segment volume difference.</p><p><strong>Results: </strong>The average Dice coefficient over all organs was 0.81 ± 0.15, 0.82 ± 0.14, 0.77 ± 0.17, and 0.79 ± 0.16 for tasks 1, 2, 3, and 4, respectively. PET-ASC models outperformed PET-NC models (P < 0.05) for most of organs. The highest Dice values were achieved for the brain (0.93 to 0.96 in all 4 tasks), whereas the lowest values were achieved for small organs, such as the adrenal glands. The trained models showed robust performance on dynamic noisy images as well.</p><p><strong>Conclusions: </strong>Deep learning models allow high-performance multiorgan segmentation for 2 popular PET tracers without the use of CT information. These models may tackle the limitations of using CT segmentation in PET/CT image quantification, kinetic modeling, radiomics analysis, dosimetry, or any other tasks that require organ segmentation masks.</p>","PeriodicalId":10692,"journal":{"name":"Clinical Nuclear Medicine","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Nuclear Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLU.0000000000005685","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The common approach for organ segmentation in hybrid imaging relies on coregistered CT (CTAC) images. This method, however, presents several limitations in real clinical workflows where mismatch between PET and CT images are very common. Moreover, low-dose CTAC images have poor quality, thus challenging the segmentation task. Recent advances in CT-less PET imaging further highlight the necessity for an effective PET organ segmentation pipeline that does not rely on CT images. Therefore, the goal of this study was to develop a CT-less multitracer PET segmentation framework.

Patients and methods: We collected 2062 PET/CT images from multiple scanners. The patients were injected with either 18F-FDG (1487) or 68Ga-PSMA (575). PET/CT images with any kind of mismatch between PET and CT images were detected through visual assessment and excluded from our study. Multiple organs were delineated on CT components using previously trained in-house developed nnU-Net models. The segmentation masks were resampled to coregistered PET images and used to train 4 different deep learning models using different images as input, including noncorrected PET (PET-NC) and attenuation and scatter-corrected PET (PET-ASC) for 18F-FDG (tasks 1 and 2, respectively using 22 organs) and PET-NC and PET-ASC for 68Ga tracers (tasks 3 and 4, respectively, using 15 organs). The models' performance was evaluated in terms of Dice coefficient, Jaccard index, and segment volume difference.

Results: The average Dice coefficient over all organs was 0.81 ± 0.15, 0.82 ± 0.14, 0.77 ± 0.17, and 0.79 ± 0.16 for tasks 1, 2, 3, and 4, respectively. PET-ASC models outperformed PET-NC models (P < 0.05) for most of organs. The highest Dice values were achieved for the brain (0.93 to 0.96 in all 4 tasks), whereas the lowest values were achieved for small organs, such as the adrenal glands. The trained models showed robust performance on dynamic noisy images as well.

Conclusions: Deep learning models allow high-performance multiorgan segmentation for 2 popular PET tracers without the use of CT information. These models may tackle the limitations of using CT segmentation in PET/CT image quantification, kinetic modeling, radiomics analysis, dosimetry, or any other tasks that require organ segmentation masks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical Nuclear Medicine
Clinical Nuclear Medicine 医学-核医学
CiteScore
2.90
自引率
31.10%
发文量
1113
审稿时长
2 months
期刊介绍: Clinical Nuclear Medicine is a comprehensive and current resource for professionals in the field of nuclear medicine. It caters to both generalists and specialists, offering valuable insights on how to effectively apply nuclear medicine techniques in various clinical scenarios. With a focus on timely dissemination of information, this journal covers the latest developments that impact all aspects of the specialty. Geared towards practitioners, Clinical Nuclear Medicine is the ultimate practice-oriented publication in the field of nuclear imaging. Its informative articles are complemented by numerous illustrations that demonstrate how physicians can seamlessly integrate the knowledge gained into their everyday practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信