6-thioguanine inhibits EV71 replication by reducing BIRC3-mediated autophagy.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Qiao You, Jing Wu, Ruining Lyu, Yurong Cai, Na Jiang, Ye Liu, Fang Zhang, Yating He, Deyan Chen, Zhiwei Wu
{"title":"6-thioguanine inhibits EV71 replication by reducing BIRC3-mediated autophagy.","authors":"Qiao You, Jing Wu, Ruining Lyu, Yurong Cai, Na Jiang, Ye Liu, Fang Zhang, Yating He, Deyan Chen, Zhiwei Wu","doi":"10.1186/s12866-025-03752-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD), and can cause severe cerebral complications and even fatality in children younger than 5 years old. However, there is no specific medication for EV71 infection in clinical practice. Our previous studies had identified the 6-thioguanine (6-TG), an FDA-approved anticancer drug, as a potential antiviral agent, but its anti-EV71 activity is largely unknown, therefore, we aim to explore the antiviral effect of 6-TG on EV71.</p><p><strong>Results: </strong>6-TG significantly suppressed EV71 mRNA level, VP1 protein expression, and viral progeny production in HT-29 cells. In EV71-infected HT-29 cells, the 50% cytotoxicity concentration of 6-TG (CC<sub>50</sub>) was > 2000 µM and the 50% inhibitory concentration of 6-TG against EV71 (IC<sub>50</sub>) was 0.9302 µM. Interestingly, the selectivity index (SI) value of 6-TG against EV71 was > 2150.1, which was higher than the SI value (> 66.7) of ribavirin. Mechanistically, 6-TG treatment reduced the expression of baculoviral IAP repeat containing 3 (BIRC3), and further inhibited EV71 replication by attenuating BIRC3-mediated the complete autophagy.</p><p><strong>Conclusions: </strong>6-TG exerted a significant inhibitory effect on EV71 infection in vitro and prevented EV71-induced the complete autophagy by decreasing BIRC3 expression. Our work provided a basis for the further development of 6-TG as a therapy for EV71-associated HFMD.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"53"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03752-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD), and can cause severe cerebral complications and even fatality in children younger than 5 years old. However, there is no specific medication for EV71 infection in clinical practice. Our previous studies had identified the 6-thioguanine (6-TG), an FDA-approved anticancer drug, as a potential antiviral agent, but its anti-EV71 activity is largely unknown, therefore, we aim to explore the antiviral effect of 6-TG on EV71.

Results: 6-TG significantly suppressed EV71 mRNA level, VP1 protein expression, and viral progeny production in HT-29 cells. In EV71-infected HT-29 cells, the 50% cytotoxicity concentration of 6-TG (CC50) was > 2000 µM and the 50% inhibitory concentration of 6-TG against EV71 (IC50) was 0.9302 µM. Interestingly, the selectivity index (SI) value of 6-TG against EV71 was > 2150.1, which was higher than the SI value (> 66.7) of ribavirin. Mechanistically, 6-TG treatment reduced the expression of baculoviral IAP repeat containing 3 (BIRC3), and further inhibited EV71 replication by attenuating BIRC3-mediated the complete autophagy.

Conclusions: 6-TG exerted a significant inhibitory effect on EV71 infection in vitro and prevented EV71-induced the complete autophagy by decreasing BIRC3 expression. Our work provided a basis for the further development of 6-TG as a therapy for EV71-associated HFMD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信