Surveillance and prevention of infection in clinical xenotransplantation.

IF 19 1区 医学 Q1 MICROBIOLOGY
Adam G Stewart, Jay A Fishman
{"title":"Surveillance and prevention of infection in clinical xenotransplantation.","authors":"Adam G Stewart, Jay A Fishman","doi":"10.1128/cmr.00150-23","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARYXenotransplantation, the transplantation of living organs, tissues, or cells between species, carries the potential to address the global shortage of human organs for patients with end-stage organ failure. Recent advances in genetic engineering have improved prospects for clinical xenotransplantation by reducing immune and inflammatory responses to grafts, controlling coagulation on endothelial surfaces, and modifying viral risks, including the porcine endogenous retrovirus (PERV). Management of infectious risks posed by clinical xenotransplantation requires meticulous attention to the biosecure breeding and microbiological surveillance of source animals and recipients and consideration of novel infection control requirements. Infectious risks in xenotransplantation stem from both known human pathogens in immunosuppressed transplant recipients and from porcine organisms for which the clinical manifestations, microbial assays, and therapies are generally limited. Both known and unknown zoonoses may be transmitted from pigs to humans. Some pig-specific pathogens do not infect human cells but have systemic manifestations when active within the xenograft, including porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV), which contributes to graft rejection and consumptive coagulopathy. The role of porcine endogenous retrovirus (PERV) in humans remains uncertain despite the absence of documented transmissions and the availability of swine with inactivated genomic PERV. New technologies, such as metagenomic sequencing and multi-omics approaches, will be essential for detection of novel infections and for understanding interactions between the xenograft, the host's immune system, and potential pathogens. These approaches will allow development of infection control protocols, pathogen surveillance requirements, and tailored antimicrobial therapies to enhance the safety and success of clinical xenotransplantation.</p>","PeriodicalId":10378,"journal":{"name":"Clinical Microbiology Reviews","volume":" ","pages":"e0015023"},"PeriodicalIF":19.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Microbiology Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/cmr.00150-23","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SUMMARYXenotransplantation, the transplantation of living organs, tissues, or cells between species, carries the potential to address the global shortage of human organs for patients with end-stage organ failure. Recent advances in genetic engineering have improved prospects for clinical xenotransplantation by reducing immune and inflammatory responses to grafts, controlling coagulation on endothelial surfaces, and modifying viral risks, including the porcine endogenous retrovirus (PERV). Management of infectious risks posed by clinical xenotransplantation requires meticulous attention to the biosecure breeding and microbiological surveillance of source animals and recipients and consideration of novel infection control requirements. Infectious risks in xenotransplantation stem from both known human pathogens in immunosuppressed transplant recipients and from porcine organisms for which the clinical manifestations, microbial assays, and therapies are generally limited. Both known and unknown zoonoses may be transmitted from pigs to humans. Some pig-specific pathogens do not infect human cells but have systemic manifestations when active within the xenograft, including porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV), which contributes to graft rejection and consumptive coagulopathy. The role of porcine endogenous retrovirus (PERV) in humans remains uncertain despite the absence of documented transmissions and the availability of swine with inactivated genomic PERV. New technologies, such as metagenomic sequencing and multi-omics approaches, will be essential for detection of novel infections and for understanding interactions between the xenograft, the host's immune system, and potential pathogens. These approaches will allow development of infection control protocols, pathogen surveillance requirements, and tailored antimicrobial therapies to enhance the safety and success of clinical xenotransplantation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical Microbiology Reviews
Clinical Microbiology Reviews 医学-微生物学
CiteScore
54.20
自引率
0.50%
发文量
38
期刊介绍: Clinical Microbiology Reviews (CMR) is a journal that primarily focuses on clinical microbiology and immunology.It aims to provide readers with up-to-date information on the latest developments in these fields.CMR also presents the current state of knowledge in clinical microbiology and immunology.Additionally, the journal offers balanced and thought-provoking perspectives on controversial issues in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信