{"title":"Recent Advancements in Drug Targeting for Ferroptosis as an Antitumor Therapy: Development of Novel therapeutics.","authors":"Reena Rawat Negi, Sanju Singh, Neeta Gupta, Manish Upadhyay, Shilpi Shrivastava, Bhawana Jain","doi":"10.2174/0115680096337123241217070834","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The primary objective of this review is to provide updated mechanisms that regulate ferroptosis sensitivity in cancer cells and recent advancements in drug targeting for ferroptosis as an antitumor therapy.</p><p><strong>Methods: </strong>To achieve these objectives, a comprehensive literature review was conducted, analyzing recent studies on ferroptosis, including its cellular, molecular, and gene-level characteristics. The review involved an evaluation of advancements in ferroptosis drug research across various medical domains, with particular attention to novel therapeutic approaches in nano-medicine, TCM, and Western medicine. The review also included an assessment of how ferroptosis influences cancer treatment, including its role in tumor drug resistance and immuno-therapy, and provided a detailed analysis of pharmacological activators of ferroptosis.</p><p><strong>Results: </strong>The review highlights several key findings, like primary mechanisms that regulate cancer cell sensitivity to ferroptosis, and provides an overview of the latest advancements in ferroptosis drug research. The review reveals that ferroptosis has both beneficial and detrimental effects on human cancer, reflecting its complex role in cancer progression and treatment. The review also emphasizes the dual nature of ferroptosis, noting its potential as both a tumor suppressor and an oncogenic factor. Additionally, it provides a comprehensive examination of various pharmacological agents that activate ferroptosis and their potential therapeutic applications.</p><p><strong>Conclusion: </strong>In conclusion, ferroptosis represents a promising target for cancer therapy, given its distinctive characteristics and significant role in tumor biology. The review underscores the need for further research to clarify the complex roles of ferroptosis in carcinogenesis and to optimize the development of novel therapeutics targeting this form of cell death. It also highlights current challenges and opportunities in the field, including the potential for overcoming cancer metastasis through ferroptosis modulation and the need for continued exploration of pharmacological activators to advance therapeutic strategies.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current cancer drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096337123241217070834","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The primary objective of this review is to provide updated mechanisms that regulate ferroptosis sensitivity in cancer cells and recent advancements in drug targeting for ferroptosis as an antitumor therapy.
Methods: To achieve these objectives, a comprehensive literature review was conducted, analyzing recent studies on ferroptosis, including its cellular, molecular, and gene-level characteristics. The review involved an evaluation of advancements in ferroptosis drug research across various medical domains, with particular attention to novel therapeutic approaches in nano-medicine, TCM, and Western medicine. The review also included an assessment of how ferroptosis influences cancer treatment, including its role in tumor drug resistance and immuno-therapy, and provided a detailed analysis of pharmacological activators of ferroptosis.
Results: The review highlights several key findings, like primary mechanisms that regulate cancer cell sensitivity to ferroptosis, and provides an overview of the latest advancements in ferroptosis drug research. The review reveals that ferroptosis has both beneficial and detrimental effects on human cancer, reflecting its complex role in cancer progression and treatment. The review also emphasizes the dual nature of ferroptosis, noting its potential as both a tumor suppressor and an oncogenic factor. Additionally, it provides a comprehensive examination of various pharmacological agents that activate ferroptosis and their potential therapeutic applications.
Conclusion: In conclusion, ferroptosis represents a promising target for cancer therapy, given its distinctive characteristics and significant role in tumor biology. The review underscores the need for further research to clarify the complex roles of ferroptosis in carcinogenesis and to optimize the development of novel therapeutics targeting this form of cell death. It also highlights current challenges and opportunities in the field, including the potential for overcoming cancer metastasis through ferroptosis modulation and the need for continued exploration of pharmacological activators to advance therapeutic strategies.
期刊介绍:
Current Cancer Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular drug targets involved in cancer, e.g. disease specific proteins, receptors, enzymes and genes.
Current Cancer Drug Targets publishes original research articles, letters, reviews / mini-reviews, drug clinical trial studies and guest edited thematic issues written by leaders in the field covering a range of current topics on drug targets involved in cancer.
As the discovery, identification, characterization and validation of novel human drug targets for anti-cancer drug discovery continues to grow; this journal has become essential reading for all pharmaceutical scientists involved in drug discovery and development.