HMGB1-mediated macrophage regulation of NF-κB activation and MMP3 upregulation in nucleus pulposus cells: A critical mechanism in the vicious cycle of intervertebral disc degeneration

IF 4.4 2区 生物学 Q2 CELL BIOLOGY
Shixin Lu , Ming Li , Ziying Cheng , Yuwei Liang , Junshen Huang , Jiajun Huang , Kun Wang , Dengbo Yao , Enming Chen , Peng Wang , Yuxi Li , Lin Huang
{"title":"HMGB1-mediated macrophage regulation of NF-κB activation and MMP3 upregulation in nucleus pulposus cells: A critical mechanism in the vicious cycle of intervertebral disc degeneration","authors":"Shixin Lu ,&nbsp;Ming Li ,&nbsp;Ziying Cheng ,&nbsp;Yuwei Liang ,&nbsp;Junshen Huang ,&nbsp;Jiajun Huang ,&nbsp;Kun Wang ,&nbsp;Dengbo Yao ,&nbsp;Enming Chen ,&nbsp;Peng Wang ,&nbsp;Yuxi Li ,&nbsp;Lin Huang","doi":"10.1016/j.cellsig.2025.111628","DOIUrl":null,"url":null,"abstract":"<div><div>Intervertebral disc degeneration (IVDD) is a leading cause of low back pain, primarily driven by inflammatory processes within the disc, particularly involving the infiltration and activity of macrophages. High Mobility Group Box 1 (HMGB1) has been identified as a crucial mediator in this inflammatory cascade, yet its precise role in macrophage-induced disc degeneration remains unclear. In this study, we employed a combination of <em>in vivo</em> and <em>in vitro</em> models, including genetically engineered mice with macrophage-specific overexpression of HMGB1, a rat model of IVDD, and cultured macrophages and nucleus pulposus cells (NPCs), to elucidate the role of HMGB1 in IVDD. Our findings reveal that HMGB1 overexpression in macrophages significantly accelerates IVDD progression by enhancing NF-κB activation and upregulating MMP3 expression in NPCs. Furthermore, the administration of glycyrrhizin (GL), an HMGB1 inhibitor, effectively mitigated these effects, delaying IVDD progression. This study not only uncovers the critical mechanisms by which HMGB1 regulates the interactions between macrophages and NPCs in the inflammatory microenvironment but also provides a theoretical framework for targeting HMGB1 as a potential therapeutic strategy for IVDD. Thus, our findings suggest a promising novel approach for the treatment of this condition.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"127 ","pages":"Article 111628"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825000415","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intervertebral disc degeneration (IVDD) is a leading cause of low back pain, primarily driven by inflammatory processes within the disc, particularly involving the infiltration and activity of macrophages. High Mobility Group Box 1 (HMGB1) has been identified as a crucial mediator in this inflammatory cascade, yet its precise role in macrophage-induced disc degeneration remains unclear. In this study, we employed a combination of in vivo and in vitro models, including genetically engineered mice with macrophage-specific overexpression of HMGB1, a rat model of IVDD, and cultured macrophages and nucleus pulposus cells (NPCs), to elucidate the role of HMGB1 in IVDD. Our findings reveal that HMGB1 overexpression in macrophages significantly accelerates IVDD progression by enhancing NF-κB activation and upregulating MMP3 expression in NPCs. Furthermore, the administration of glycyrrhizin (GL), an HMGB1 inhibitor, effectively mitigated these effects, delaying IVDD progression. This study not only uncovers the critical mechanisms by which HMGB1 regulates the interactions between macrophages and NPCs in the inflammatory microenvironment but also provides a theoretical framework for targeting HMGB1 as a potential therapeutic strategy for IVDD. Thus, our findings suggest a promising novel approach for the treatment of this condition.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular signalling
Cellular signalling 生物-细胞生物学
CiteScore
8.40
自引率
0.00%
发文量
250
审稿时长
27 days
期刊介绍: Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo. Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信