{"title":"Electric-field induced sleep promotion and lifespan extension in Gaucher's disease model flies","authors":"Takaki Nedachi , Haruhisa Kawasaki , Eiji Inoue , Takahiro Suzuki , Yuzo Nakagawa-Yagi , Norio Ishida","doi":"10.1016/j.bbrep.2025.101915","DOIUrl":null,"url":null,"abstract":"<div><div>Gaucher's disease (GD) is a genetic disease characterized by a mutation in the metabolic enzyme glucocerebrosidase (GBA1), leading to the accumulation of glucosylceramide in tissues. We previously discovered that a <em>minos</em>-inserted mutation in the <em>GBA1</em> gene of fruit flies, <em>Drosophila melanogaster</em>, mimics human neuronopathic GD (nGD) characteristics, providing a promising model for studying the molecular mechanisms of the disease. We also reported that extremely low-frequency electric fields (ELF-EFs) promote sleep and extend the lifespan of wild-type flies.</div><div>In this study, we show that ELF-EFs have health-promoting effects on nGD model flies.</div><div>Firstly, the total sleep time and sleep episode duration of EF-exposed nGD model flies increased. EFs also extended the lifespans of nGD model flies. Additionally, the expression of the endoplasmic reticulum stress-related gene <em>PERK</em> and autophagy-related gene <em>p62</em> were elevated after EF exposure. The effects of EF exposure on nGD flies are associated with the change of these genes expression. Our findings suggest that EF exposure may be effective as an additional therapy for nGD.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"41 ","pages":"Article 101915"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774813/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gaucher's disease (GD) is a genetic disease characterized by a mutation in the metabolic enzyme glucocerebrosidase (GBA1), leading to the accumulation of glucosylceramide in tissues. We previously discovered that a minos-inserted mutation in the GBA1 gene of fruit flies, Drosophila melanogaster, mimics human neuronopathic GD (nGD) characteristics, providing a promising model for studying the molecular mechanisms of the disease. We also reported that extremely low-frequency electric fields (ELF-EFs) promote sleep and extend the lifespan of wild-type flies.
In this study, we show that ELF-EFs have health-promoting effects on nGD model flies.
Firstly, the total sleep time and sleep episode duration of EF-exposed nGD model flies increased. EFs also extended the lifespans of nGD model flies. Additionally, the expression of the endoplasmic reticulum stress-related gene PERK and autophagy-related gene p62 were elevated after EF exposure. The effects of EF exposure on nGD flies are associated with the change of these genes expression. Our findings suggest that EF exposure may be effective as an additional therapy for nGD.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.