METTL7A improves bovine IVF embryo competence by attenuating oxidative stress.

IF 3.1 2区 生物学 Q2 REPRODUCTIVE BIOLOGY
Linkai Zhu, Hao Ming, Giovanna N Scatolin, Andrew Xiao, Zongliang Jiang
{"title":"METTL7A improves bovine IVF embryo competence by attenuating oxidative stress.","authors":"Linkai Zhu, Hao Ming, Giovanna N Scatolin, Andrew Xiao, Zongliang Jiang","doi":"10.1093/biolre/ioaf018","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro fertilization (IVF) is a widely used assisted reproductive technology to achieve a successful pregnancy. However, the acquisition of oxidative stress in embryo in vitro culture impairs its competence. Here, we demonstrated that a nuclear coding gene, methyltransferase-like protein 7A (METTL7A), improves the developmental potential of bovine embryos. We found that exogenous METTL7A modulates expression of genes involved in embryonic cell mitochondrial pathways and promotes trophectoderm development. Surprisingly, we discovered that METTL7A alleviates mitochondrial stress and DNA damage and promotes cell cycle progression during embryo cleavage. In summary, we have identified a novel mitochondria stress eliminating mechanism regulated by METTL7A that occurs during the acquisition of oxidative stress in embryo in vitro culture. This discovery lays the groundwork for the development of METTL7A as a promising therapeutic target for IVF embryo competence.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioaf018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In vitro fertilization (IVF) is a widely used assisted reproductive technology to achieve a successful pregnancy. However, the acquisition of oxidative stress in embryo in vitro culture impairs its competence. Here, we demonstrated that a nuclear coding gene, methyltransferase-like protein 7A (METTL7A), improves the developmental potential of bovine embryos. We found that exogenous METTL7A modulates expression of genes involved in embryonic cell mitochondrial pathways and promotes trophectoderm development. Surprisingly, we discovered that METTL7A alleviates mitochondrial stress and DNA damage and promotes cell cycle progression during embryo cleavage. In summary, we have identified a novel mitochondria stress eliminating mechanism regulated by METTL7A that occurs during the acquisition of oxidative stress in embryo in vitro culture. This discovery lays the groundwork for the development of METTL7A as a promising therapeutic target for IVF embryo competence.

METTL7A通过减轻氧化应激提高牛体外受精胚胎能力。
体外受精(IVF)是一种广泛使用的辅助生殖技术,以实现成功怀孕。然而,胚胎在离体培养过程中氧化应激的获得削弱了其能力。在这里,我们证明了一个核编码基因,甲基转移酶样蛋白7A (METTL7A),提高了牛胚胎的发育潜力。我们发现外源性METTL7A调节胚胎细胞线粒体通路相关基因的表达,促进滋养外胚层发育。令人惊讶的是,我们发现METTL7A减轻线粒体应激和DNA损伤,并促进胚胎分裂过程中的细胞周期进程。综上所述,我们已经确定了一种新的线粒体应激消除机制,该机制由METTL7A调节,发生在胚胎体外培养中获得氧化应激的过程中。这一发现为开发METTL7A作为体外受精胚胎能力的有希望的治疗靶点奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology of Reproduction
Biology of Reproduction 生物-生殖生物学
CiteScore
6.30
自引率
5.60%
发文量
214
审稿时长
1 months
期刊介绍: Biology of Reproduction (BOR) is the official journal of the Society for the Study of Reproduction and publishes original research on a broad range of topics in the field of reproductive biology, as well as reviews on topics of current importance or controversy. BOR is consistently one of the most highly cited journals publishing original research in the field of reproductive biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信