Novel Pt (II) Complexes With Anticancer Activity Against Pancreatic Ductal Adenocarcinoma Cells.

IF 4.7 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bioinorganic Chemistry and Applications Pub Date : 2024-12-31 eCollection Date: 2024-01-01 DOI:10.1155/bca/5588491
Erika Stefàno, Gianluca Rovito, Luca G Cossa, Federica De Castro, Viviana Vergaro, Asjad Ali, Giulia My, Danilo Migoni, Antonella Muscella, Santo Marsigliante, Michele Benedetti, Francesco Paolo Fanizzi
{"title":"Novel Pt (II) Complexes With Anticancer Activity Against Pancreatic Ductal Adenocarcinoma Cells.","authors":"Erika Stefàno, Gianluca Rovito, Luca G Cossa, Federica De Castro, Viviana Vergaro, Asjad Ali, Giulia My, Danilo Migoni, Antonella Muscella, Santo Marsigliante, Michele Benedetti, Francesco Paolo Fanizzi","doi":"10.1155/bca/5588491","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of solid tumor that is becoming more common. <i>cis</i>-[PtCl<sub>2</sub> (NH<sub>3</sub>)<sub>2</sub>] (in short cisplatin or CDDP) has been shown to be effective in treating various cancers, including PDAC. However, the development of resistance to chemotherapy drugs has created a need for the synthesis of new anticancer agents. Platinum-based drugs containing the bidentate ligand phenanthroline have been found to have strong antitumor activity due to their ability to cause DNA damage. In this study, we examined the ability of two Pt (II) cationic complexes, [Pt(<i>η</i> <sup>1</sup>-C<sub>2</sub>H<sub>4</sub>OR) (DMSO) (phen)]<sup>+</sup> (in short Pt-EtORSOphen; <i>R</i> = Me, <b>1</b>; Et, <b>2</b>), to inhibit the growth and spread of BxPC-3 PDAC cells, in comparison to CDDP. The length of the alkyl chain and its associated lipophilic properties did not affect the anticancer effects of complexes <b>1</b> and <b>2</b> in BxPC-3 cells. However, it did appear to influence the rapid loss of mitochondrial membrane potential (ΔΨ<sub>M</sub>), suggesting that these complexes could potentially be used as mitochondria-targeted lipophilic cations in anticancer therapy.</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"2024 ","pages":"5588491"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779987/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinorganic Chemistry and Applications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/bca/5588491","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of solid tumor that is becoming more common. cis-[PtCl2 (NH3)2] (in short cisplatin or CDDP) has been shown to be effective in treating various cancers, including PDAC. However, the development of resistance to chemotherapy drugs has created a need for the synthesis of new anticancer agents. Platinum-based drugs containing the bidentate ligand phenanthroline have been found to have strong antitumor activity due to their ability to cause DNA damage. In this study, we examined the ability of two Pt (II) cationic complexes, [Pt(η 1-C2H4OR) (DMSO) (phen)]+ (in short Pt-EtORSOphen; R = Me, 1; Et, 2), to inhibit the growth and spread of BxPC-3 PDAC cells, in comparison to CDDP. The length of the alkyl chain and its associated lipophilic properties did not affect the anticancer effects of complexes 1 and 2 in BxPC-3 cells. However, it did appear to influence the rapid loss of mitochondrial membrane potential (ΔΨM), suggesting that these complexes could potentially be used as mitochondria-targeted lipophilic cations in anticancer therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinorganic Chemistry and Applications
Bioinorganic Chemistry and Applications 化学-生化与分子生物学
CiteScore
7.00
自引率
5.30%
发文量
105
审稿时长
>12 weeks
期刊介绍: Bioinorganic Chemistry and Applications is primarily devoted to original research papers, but also publishes review articles, editorials, and letter to the editor in the general field of bioinorganic chemistry and its applications. Its scope includes all aspects of bioinorganic chemistry, including bioorganometallic chemistry and applied bioinorganic chemistry. The journal welcomes papers relating to metalloenzymes and model compounds, metal-based drugs, biomaterials, biocatalysis and bioelectronics, metals in biology and medicine, metals toxicology and metals in the environment, metal interactions with biomolecules and spectroscopic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信