Dace Gao, Tom P A van der Pol, Chiara Musumeci, Deyu Tu, Simone Fabiano
{"title":"Organic Mixed Conductors for Neural Biomimicry and Biointerfacing.","authors":"Dace Gao, Tom P A van der Pol, Chiara Musumeci, Deyu Tu, Simone Fabiano","doi":"10.1146/annurev-chembioeng-082323-114810","DOIUrl":null,"url":null,"abstract":"<p><p>Organic mixed ionic-electronic conductors (OMIECs) could revolutionize bioelectronics by enabling seamless integration with biological systems. This review explores their role in neural biomimicry and biointerfacing, with a focus on how backbone design, sidechain optimization, and antiambipolarity impact performance. Recent advances highlight OMIECs' biocompatibility and mechanical compliance, making them ideal for bioelectronic applications. However, challenges such as mechanical mismatch and electrical impedance remain. We discuss innovative solutions to these issues, enhancing OMIEC functionality. In neuromorphic bioelectronics, OMIECs show promise for bridging artificial and biological neural systems, though further improvements in conductivity and resolution are needed. Continued innovation in materials and design is crucial to unlocking their full potential, driving advancements in both technology and medicine.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-082323-114810","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Organic mixed ionic-electronic conductors (OMIECs) could revolutionize bioelectronics by enabling seamless integration with biological systems. This review explores their role in neural biomimicry and biointerfacing, with a focus on how backbone design, sidechain optimization, and antiambipolarity impact performance. Recent advances highlight OMIECs' biocompatibility and mechanical compliance, making them ideal for bioelectronic applications. However, challenges such as mechanical mismatch and electrical impedance remain. We discuss innovative solutions to these issues, enhancing OMIEC functionality. In neuromorphic bioelectronics, OMIECs show promise for bridging artificial and biological neural systems, though further improvements in conductivity and resolution are needed. Continued innovation in materials and design is crucial to unlocking their full potential, driving advancements in both technology and medicine.
期刊介绍:
The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.