Control Principles of Neural Dynamics Revealed by the Neurobiology of Timing.

IF 12.1 1区 医学 Q1 NEUROSCIENCES
Gabriel M Stine, Mehrdad Jazayeri
{"title":"Control Principles of Neural Dynamics Revealed by the Neurobiology of Timing.","authors":"Gabriel M Stine, Mehrdad Jazayeri","doi":"10.1146/annurev-neuro-091724-015512","DOIUrl":null,"url":null,"abstract":"<p><p>Cognition unfolds dynamically over flexible timescales. A major goal of the field is to understand the computational and neurobiological principles that enable this flexibility. Here, we argue that the neurobiology of timing provides a platform for tackling these questions. We begin with an overview of proposed coding schemes for the representation of elapsed time, highlighting their computational properties. We then leverage the one-dimensional and unidirectional nature of time to highlight common principles across these coding schemes. These principles facilitate a precise formulation of questions related to the flexible control, variability, and calibration of neural dynamics. We review recent work that demonstrates how dynamical systems analysis of thalamocortical population activity in timing tasks has provided fundamental insights into how the brain calibrates and flexibly controls neural dynamics. We conclude with speculations about the architectural biases and neural substrates that support the control and calibration of neural dynamics more generally.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-091724-015512","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cognition unfolds dynamically over flexible timescales. A major goal of the field is to understand the computational and neurobiological principles that enable this flexibility. Here, we argue that the neurobiology of timing provides a platform for tackling these questions. We begin with an overview of proposed coding schemes for the representation of elapsed time, highlighting their computational properties. We then leverage the one-dimensional and unidirectional nature of time to highlight common principles across these coding schemes. These principles facilitate a precise formulation of questions related to the flexible control, variability, and calibration of neural dynamics. We review recent work that demonstrates how dynamical systems analysis of thalamocortical population activity in timing tasks has provided fundamental insights into how the brain calibrates and flexibly controls neural dynamics. We conclude with speculations about the architectural biases and neural substrates that support the control and calibration of neural dynamics more generally.

时序神经生物学揭示的神经动力学控制原理。
认知在灵活的时间尺度上动态展开。该领域的一个主要目标是了解实现这种灵活性的计算和神经生物学原理。在这里,我们认为时间的神经生物学为解决这些问题提供了一个平台。我们首先概述了用于表示运行时间的拟议编码方案,重点介绍了它们的计算特性。然后,我们利用时间的一维和单向性质来突出这些编码方案的共同原则。这些原则促进了与神经动力学的灵活控制、可变性和校准有关的问题的精确表述。我们回顾了最近的研究,这些研究表明,在定时任务中,丘脑皮质种群活动的动态系统分析为大脑如何校准和灵活控制神经动力学提供了基本的见解。最后,我们对结构偏差和支持神经动力学控制和校准的神经基质进行了推测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of neuroscience
Annual review of neuroscience 医学-神经科学
CiteScore
25.30
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience. The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信