Metabolic fuel selection in rainbow trout: coping with intralipid infusion.

IF 2.2 3区 医学 Q3 PHYSIOLOGY
Giancarlo G M Talarico, Elie Farhat, Jan A Mennigen, Jean-Michel Weber
{"title":"Metabolic fuel selection in rainbow trout: coping with intralipid infusion.","authors":"Giancarlo G M Talarico, Elie Farhat, Jan A Mennigen, Jean-Michel Weber","doi":"10.1152/ajpregu.00170.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of hyperlipidemia on fuel selection has never been investigated in fish. This study quantifies how intralipid administration affects <i>i</i>) in vivo mobilization of lipids (lipolytic rate: <i>R</i><sub>a</sub> glycerol) and carbohydrates (hepatic glucose production: <i>R</i><sub>a</sub> glucose) in rainbow trout and <i>ii</i>) key proteins involved in the regulation of fuel metabolism that could explain changes in glycerol and glucose kinetics. Results show that intralipid triples lipolytic rate (from 2.5 ± 0.5 to 7.8 ± 1.1 µmol glycerol kg<sup>-1</sup>·min<sup>-1</sup>) and inhibits glucose production by 36% (from 7.3 ± 0.9 to 4.7 ± 0.4 µmol kg<sup>-1</sup>·min<sup>-1</sup>). The stimulation of lipolysis is probably driven by lipase activation (gene expression of hormone-sensitive lipase increases in muscle) or by mass action effect. Such a strong lipolytic response is quite surprising because baseline <i>R</i><sub>a</sub> glycerol is already particularly high in fish and is well known for its stability under a variety of stresses that have important effects in mammals. The reduction in trout <i>R</i><sub>a</sub> glucose is likely caused by a large decrease in glycogen mobilization because hepatic gluconeogenic pathway capacity may rise as a consequence of increases in gluconeogenesis gene transcript levels. In contrast to humans, which maintain steady glucose production in response to intralipid infusion, rainbow trout appears to overcompensate increased gluconeogenic capacity with a disproportionately large inhibition of glycogen breakdown. Overall, these intralipid-driven changes in glycerol and glucose kinetics allow fish to decrease their reliance on carbohydrates and amino acids by replacing them, in part, with fatty acids as metabolic fuels.<b>NEW & NOTEWORTHY</b> How do fish respond to an intralipid infusion (a soybean-derived emulsion used for parenteral nutrition of human patients)? In rainbow trout, intralipid administration triples the rate of lipid mobilization (lipolysis) and reduces hepatic glucose production by 36%. These changes in substrate fluxes allow fish to decrease their reliance on amino acids and carbohydrates by substituting them with fatty acids as metabolic fuels.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R306-R318"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00170.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of hyperlipidemia on fuel selection has never been investigated in fish. This study quantifies how intralipid administration affects i) in vivo mobilization of lipids (lipolytic rate: Ra glycerol) and carbohydrates (hepatic glucose production: Ra glucose) in rainbow trout and ii) key proteins involved in the regulation of fuel metabolism that could explain changes in glycerol and glucose kinetics. Results show that intralipid triples lipolytic rate (from 2.5 ± 0.5 to 7.8 ± 1.1 µmol glycerol kg-1·min-1) and inhibits glucose production by 36% (from 7.3 ± 0.9 to 4.7 ± 0.4 µmol kg-1·min-1). The stimulation of lipolysis is probably driven by lipase activation (gene expression of hormone-sensitive lipase increases in muscle) or by mass action effect. Such a strong lipolytic response is quite surprising because baseline Ra glycerol is already particularly high in fish and is well known for its stability under a variety of stresses that have important effects in mammals. The reduction in trout Ra glucose is likely caused by a large decrease in glycogen mobilization because hepatic gluconeogenic pathway capacity may rise as a consequence of increases in gluconeogenesis gene transcript levels. In contrast to humans, which maintain steady glucose production in response to intralipid infusion, rainbow trout appears to overcompensate increased gluconeogenic capacity with a disproportionately large inhibition of glycogen breakdown. Overall, these intralipid-driven changes in glycerol and glucose kinetics allow fish to decrease their reliance on carbohydrates and amino acids by replacing them, in part, with fatty acids as metabolic fuels.NEW & NOTEWORTHY How do fish respond to an intralipid infusion (a soybean-derived emulsion used for parenteral nutrition of human patients)? In rainbow trout, intralipid administration triples the rate of lipid mobilization (lipolysis) and reduces hepatic glucose production by 36%. These changes in substrate fluxes allow fish to decrease their reliance on amino acids and carbohydrates by substituting them with fatty acids as metabolic fuels.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
3.60%
发文量
145
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信