Paeoniflorin inhibits pyruvate dehydrogenase kinase 3 and promotes BDNF activity by modulating neuronal activity and TNF-α

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Pinky, Saleha Anwar, Neha, Suhel Parvez
{"title":"Paeoniflorin inhibits pyruvate dehydrogenase kinase 3 and promotes BDNF activity by modulating neuronal activity and TNF-α","authors":"Pinky,&nbsp;Saleha Anwar,&nbsp;Neha,&nbsp;Suhel Parvez","doi":"10.1016/j.brainres.2025.149476","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic dysregulation causes diseases like diabetes and cancer, making PDKs attractive targets. However, a thorough investigation into the unique roles played by the different members of the PDK family, especially PDK3, about memory loss and related diseases like Alzheimer’s disease (AD) is still lacking. The current study investigates PF’s potential to reduce PDK3-associated toxicity in neurodegenerative illnesses, including AD. The association between PF and PDK3 presents a significant opportunity for medication development and AD therapy approaches. PF efficiently suppresses PDK3 activity, as demonstrated by molecular docking and biophysical characterization, providing an in-depth understanding of their molecular interactions. PF significantly inhibited PDK3 in a concentration-dependent manner with an IC50 value of 4.88 µM. Considering this, the current investigation also explores the biological component of PF, which exhibits potential in treating AD and is primarily associated with neuroprotection. In the present study, a 3-hour pre-treatment of PF was administered at varying concentrations (4, 6, and 8 µM) in response to the 24-hour SCP (2 mM)-mediated toxicity. Based on the results of <em>in silico</em> and biophysical characterization, it is concluded that PF inhibits the PDK3 activity. Additionally, it can enhance cell viability, suppress ROS expression, impede apoptosis, and downregulate TNF-α expression. When combined, these actions help to prevent neuronal death in an in vitro model of SCP. PF strengthens the memory marker, which is confirmed through BDNF expression. This study found that all results were more effective at lower and moderate doses of PF. Our research indicates that PF boosts memory, decelerates the progression of oxidative stress, and could potentially serve as a dose-dependent treatment for AD.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1851 ","pages":"Article 149476"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899325000344","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic dysregulation causes diseases like diabetes and cancer, making PDKs attractive targets. However, a thorough investigation into the unique roles played by the different members of the PDK family, especially PDK3, about memory loss and related diseases like Alzheimer’s disease (AD) is still lacking. The current study investigates PF’s potential to reduce PDK3-associated toxicity in neurodegenerative illnesses, including AD. The association between PF and PDK3 presents a significant opportunity for medication development and AD therapy approaches. PF efficiently suppresses PDK3 activity, as demonstrated by molecular docking and biophysical characterization, providing an in-depth understanding of their molecular interactions. PF significantly inhibited PDK3 in a concentration-dependent manner with an IC50 value of 4.88 µM. Considering this, the current investigation also explores the biological component of PF, which exhibits potential in treating AD and is primarily associated with neuroprotection. In the present study, a 3-hour pre-treatment of PF was administered at varying concentrations (4, 6, and 8 µM) in response to the 24-hour SCP (2 mM)-mediated toxicity. Based on the results of in silico and biophysical characterization, it is concluded that PF inhibits the PDK3 activity. Additionally, it can enhance cell viability, suppress ROS expression, impede apoptosis, and downregulate TNF-α expression. When combined, these actions help to prevent neuronal death in an in vitro model of SCP. PF strengthens the memory marker, which is confirmed through BDNF expression. This study found that all results were more effective at lower and moderate doses of PF. Our research indicates that PF boosts memory, decelerates the progression of oxidative stress, and could potentially serve as a dose-dependent treatment for AD.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Research
Brain Research 医学-神经科学
CiteScore
5.90
自引率
3.40%
发文量
268
审稿时长
47 days
期刊介绍: An international multidisciplinary journal devoted to fundamental research in the brain sciences. Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed. With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信