MOF UiO-66 and its composites: design strategies and applications in drug and antibiotic removal.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Aqsa Iqbal, Hayat Ullah, Maham Iqbal, Malik Saddam Khan, Raja Summe Ullah, Zarif Gul, Rafia Rehman, Ataf Ali Altaf, Shaheed Ullah
{"title":"MOF UiO-66 and its composites: design strategies and applications in drug and antibiotic removal.","authors":"Aqsa Iqbal, Hayat Ullah, Maham Iqbal, Malik Saddam Khan, Raja Summe Ullah, Zarif Gul, Rafia Rehman, Ataf Ali Altaf, Shaheed Ullah","doi":"10.1007/s11356-025-35922-6","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotics and pharmaceuticals exert significant environmental risks to aquatic ecosystems and human health. Many effective remedies to this problem have been developed through research. Metal-organic frameworks (MOFs) are potential constituents, for drug and antibiotic removal. This article explores the potential of MOFs like UiO-66 (University of Oslo-66) to remove pharmaceutical and antibiotic contaminants from water. Zr-based MOF UiO-66 is used in water treatment due to its well-known chemical, thermal, and mechanical stability. The review covers several modifications, including metal doping, organic-group functionalization, and composite construction, to increase the UiO-66 selectivity and adsorption capacity for various pollutants. Recent studies have shown that UiO-66 is an effective material for pharmaceutical pollutants such as ciprofloxacin, tetracycline, and sulfamethoxazole removal. Practical application, photostability, and large-scale synthesis remain challenges in water treatment methods. Moreover, recent studies indicate the recycling potential of UiO-66 that validates its capability to retain its efficiency over multiple cycles, indicating its cost-effectiveness and sustainability. Besides, the toxicity of UiO-66 and its derivatives, which occur during water treatment, has also been highlighted, addressing the health and environmental risks. Prospective research directions include designing flaws, producing stable analogs of UiO-66, and transforming powdered UiO-66 into other forms that might be utilized, including films and membranes. This review is crucial as no comprehensive literature is currently available that thoroughly discusses the design techniques and applications of UiO-66 and its composites for drug and antibiotic removal. Our study specifically concentrates on the latest developments, emphasizing particular alterations that improve performance in water treatment.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-35922-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotics and pharmaceuticals exert significant environmental risks to aquatic ecosystems and human health. Many effective remedies to this problem have been developed through research. Metal-organic frameworks (MOFs) are potential constituents, for drug and antibiotic removal. This article explores the potential of MOFs like UiO-66 (University of Oslo-66) to remove pharmaceutical and antibiotic contaminants from water. Zr-based MOF UiO-66 is used in water treatment due to its well-known chemical, thermal, and mechanical stability. The review covers several modifications, including metal doping, organic-group functionalization, and composite construction, to increase the UiO-66 selectivity and adsorption capacity for various pollutants. Recent studies have shown that UiO-66 is an effective material for pharmaceutical pollutants such as ciprofloxacin, tetracycline, and sulfamethoxazole removal. Practical application, photostability, and large-scale synthesis remain challenges in water treatment methods. Moreover, recent studies indicate the recycling potential of UiO-66 that validates its capability to retain its efficiency over multiple cycles, indicating its cost-effectiveness and sustainability. Besides, the toxicity of UiO-66 and its derivatives, which occur during water treatment, has also been highlighted, addressing the health and environmental risks. Prospective research directions include designing flaws, producing stable analogs of UiO-66, and transforming powdered UiO-66 into other forms that might be utilized, including films and membranes. This review is crucial as no comprehensive literature is currently available that thoroughly discusses the design techniques and applications of UiO-66 and its composites for drug and antibiotic removal. Our study specifically concentrates on the latest developments, emphasizing particular alterations that improve performance in water treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信