Development and experimental validation of a machine learning model for the prediction of new antimalarials.

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mukul Kore, Dimple Acharya, Lakshya Sharma, Shruthi Sridhar Vembar, Sandeep Sundriyal
{"title":"Development and experimental validation of a machine learning model for the prediction of new antimalarials.","authors":"Mukul Kore, Dimple Acharya, Lakshya Sharma, Shruthi Sridhar Vembar, Sandeep Sundriyal","doi":"10.1186/s13065-025-01395-4","DOIUrl":null,"url":null,"abstract":"<p><p>A large set of antimalarial molecules (N ~ 15k) was employed from ChEMBL to build a robust random forest (RF) model for the prediction of antiplasmodial activity. Rather than depending on high throughput screening (HTS) data, molecules tested at multiple doses against blood stages of Plasmodium falciparum were used for model development. The open-access and code-free KNIME platform was used to develop a workflow to train the model on 80% of data (N ~ 12k). The hyperparameter values were optimized to achieve the highest predictive accuracy with nine different molecular fingerprints (MFPs), among which Avalon MFPs (referred to as RF-1) provided the best results. RF-1 displayed 91.7% accuracy, 93.5% precision, 88.4% sensitivity and 97.3% area under the Receiver operating characteristic (AUROC) for the remaining 20% test set. The predictive performance of RF-1 was comparable to that of the malaria inhibitor prediction platform (MAIP), a recently reported consensus model based on a large proprietary dataset. However, hits obtained from RF-1 and MAIP from a commercial library did not overlap, suggesting that these two models are complementary. Finally, RF-1 was used to screen small molecules under clinical investigations for repurposing. Six molecules were purchased, out of which two human kinase inhibitors were identified to have single-digit micromolar antiplasmodial activity. One of the hits (compound 1) was a potent inhibitor of β-hematin, suggesting the involvement of parasite hemozoin (Hz) synthesis in the parasiticidal effect. The training and test sets are provided as supplementary information, allowing others to reproduce this work.</p>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":"28"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s13065-025-01395-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A large set of antimalarial molecules (N ~ 15k) was employed from ChEMBL to build a robust random forest (RF) model for the prediction of antiplasmodial activity. Rather than depending on high throughput screening (HTS) data, molecules tested at multiple doses against blood stages of Plasmodium falciparum were used for model development. The open-access and code-free KNIME platform was used to develop a workflow to train the model on 80% of data (N ~ 12k). The hyperparameter values were optimized to achieve the highest predictive accuracy with nine different molecular fingerprints (MFPs), among which Avalon MFPs (referred to as RF-1) provided the best results. RF-1 displayed 91.7% accuracy, 93.5% precision, 88.4% sensitivity and 97.3% area under the Receiver operating characteristic (AUROC) for the remaining 20% test set. The predictive performance of RF-1 was comparable to that of the malaria inhibitor prediction platform (MAIP), a recently reported consensus model based on a large proprietary dataset. However, hits obtained from RF-1 and MAIP from a commercial library did not overlap, suggesting that these two models are complementary. Finally, RF-1 was used to screen small molecules under clinical investigations for repurposing. Six molecules were purchased, out of which two human kinase inhibitors were identified to have single-digit micromolar antiplasmodial activity. One of the hits (compound 1) was a potent inhibitor of β-hematin, suggesting the involvement of parasite hemozoin (Hz) synthesis in the parasiticidal effect. The training and test sets are provided as supplementary information, allowing others to reproduce this work.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信