Photoperiod and Light Spectrum Modulate Daily Rhythms and Expression of Genes Involved in Cell Proliferation, DNA Repair, Apoptosis and Oxidative Stress in a Seabream Embryonic Stem Cell Line.

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Alba Vergès-Castillo, Patricia Herrera-Pérez, Carlos Pendón, Águeda J Martín-Robles, José A Muñoz-Cueto
{"title":"Photoperiod and Light Spectrum Modulate Daily Rhythms and Expression of Genes Involved in Cell Proliferation, DNA Repair, Apoptosis and Oxidative Stress in a Seabream Embryonic Stem Cell Line.","authors":"Alba Vergès-Castillo, Patricia Herrera-Pérez, Carlos Pendón, Águeda J Martín-Robles, José A Muñoz-Cueto","doi":"10.1007/s10126-025-10418-z","DOIUrl":null,"url":null,"abstract":"<p><p>The use of cell lines as alternative models for environmental physiology studies opens a new window of possibilities and is becoming an increasingly used tool in marine research to fulfil the 3R's rule. In this study, an embryonic monoclonal stem cell line obtained from a marine teleost (gilthead seabream, Sparus aurata) was employed to assess the effects of photoperiod (light/dark cycles vs constant dark) and light spectrum (white, blue, green, blue/green and red lights) on gene expression and rhythms of cellular markers of proliferation, DNA repair, apoptosis and cellular/oxidative stress by RT-qPCR and cosinor analyses. The results obtained revealed the optimal performance of cells under blue light (LDB), with all the genes analysed showing their highest RNA expression levels and most robust daily variations/rhythms in this condition. Under LDB, the mRNA levels of cell proliferation (pcna), DNA repair (cry5), anti-apoptotic (bcl2) and oxidative stress (prdx2) markers peaked at the day-night transition, whereas pro-apoptotic (bax) and cell stress (hsp70) markers showed their highest expression at the night-day transition, evidencing the strong synchronisation of the transcription of key genes involved in the cell cycle in this photoregime. The persistence of significant pcna, cry5, hsp70 and prdx2 rhythms after 3 days in constant darkness reveals the endogenous and circadian nature of these rhythms. Our results highlight the importance of implementing photoperiods with light-dark cycles of blue wavelengths when performing fish cell culture research. These results reinforce and extend our previous studies, confirming the importance of lighting conditions that mimic the natural environment for the proper development of fish embryos and larvae in aquaculture.</p>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":"37"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10126-025-10418-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of cell lines as alternative models for environmental physiology studies opens a new window of possibilities and is becoming an increasingly used tool in marine research to fulfil the 3R's rule. In this study, an embryonic monoclonal stem cell line obtained from a marine teleost (gilthead seabream, Sparus aurata) was employed to assess the effects of photoperiod (light/dark cycles vs constant dark) and light spectrum (white, blue, green, blue/green and red lights) on gene expression and rhythms of cellular markers of proliferation, DNA repair, apoptosis and cellular/oxidative stress by RT-qPCR and cosinor analyses. The results obtained revealed the optimal performance of cells under blue light (LDB), with all the genes analysed showing their highest RNA expression levels and most robust daily variations/rhythms in this condition. Under LDB, the mRNA levels of cell proliferation (pcna), DNA repair (cry5), anti-apoptotic (bcl2) and oxidative stress (prdx2) markers peaked at the day-night transition, whereas pro-apoptotic (bax) and cell stress (hsp70) markers showed their highest expression at the night-day transition, evidencing the strong synchronisation of the transcription of key genes involved in the cell cycle in this photoregime. The persistence of significant pcna, cry5, hsp70 and prdx2 rhythms after 3 days in constant darkness reveals the endogenous and circadian nature of these rhythms. Our results highlight the importance of implementing photoperiods with light-dark cycles of blue wavelengths when performing fish cell culture research. These results reinforce and extend our previous studies, confirming the importance of lighting conditions that mimic the natural environment for the proper development of fish embryos and larvae in aquaculture.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Biotechnology
Marine Biotechnology 工程技术-海洋与淡水生物学
CiteScore
4.80
自引率
3.30%
发文量
95
审稿时长
2 months
期刊介绍: Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信