Bioconvection of a radiating and reacting nanofluid flow past a nonlinear stretchable permeable sheet in a porous medium

IF 1.8 4区 生物学 Q3 BIOPHYSICS
Kavita Jat, Kalpna Sharma, Prasun Choudhary, Pooja Soni
{"title":"Bioconvection of a radiating and reacting nanofluid flow past a nonlinear stretchable permeable sheet in a porous medium","authors":"Kavita Jat,&nbsp;Kalpna Sharma,&nbsp;Prasun Choudhary,&nbsp;Pooja Soni","doi":"10.1007/s10867-025-09669-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the unsteady laminar flow and heat and mass transfer of a nanofluid in the appearance of gyrotactic microorganisms. In this analysis, using the Darcy–Forchheimer flow inside the vicinity of a nonlinearly stretched surface with Brownian motion and thermophoresis impacts. Similarity conversion is familiar with reduced governing models into dimensionless variables, and “bvp4c,” a MATLAB solver, is employed to find the computational outputs of this analysis. This analysis reports that the use of nanofluids provides better thermal characteristics which are helpful to enhance the heat transfer coefficient. Graphs for this analysis are created for distinct values of non-dimensionless parameters, whereas the coefficient of surface drag, heat flux, mass flux, and rate of microorganism density are all interpreted numerically and graphically. The high level of resistance provided by velocity slip and Forchheimer parameters leads to a decrease in velocity curves while an increment is seen in the temperature profile. It is also remarked that bioconvection Peclet number induces a decrement in the density distribution of motile microorganisms. In addition, it has been observed that the Nusselt number for a nonlinear stretching sheet is better as compared to a linear stretching sheet.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"51 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-025-09669-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the unsteady laminar flow and heat and mass transfer of a nanofluid in the appearance of gyrotactic microorganisms. In this analysis, using the Darcy–Forchheimer flow inside the vicinity of a nonlinearly stretched surface with Brownian motion and thermophoresis impacts. Similarity conversion is familiar with reduced governing models into dimensionless variables, and “bvp4c,” a MATLAB solver, is employed to find the computational outputs of this analysis. This analysis reports that the use of nanofluids provides better thermal characteristics which are helpful to enhance the heat transfer coefficient. Graphs for this analysis are created for distinct values of non-dimensionless parameters, whereas the coefficient of surface drag, heat flux, mass flux, and rate of microorganism density are all interpreted numerically and graphically. The high level of resistance provided by velocity slip and Forchheimer parameters leads to a decrease in velocity curves while an increment is seen in the temperature profile. It is also remarked that bioconvection Peclet number induces a decrement in the density distribution of motile microorganisms. In addition, it has been observed that the Nusselt number for a nonlinear stretching sheet is better as compared to a linear stretching sheet.

辐射和反应的纳米流体流过多孔介质中的非线性可拉伸可渗透片的生物对流。
本研究评估了微陀螺微生物表面纳米流体的非定常层流和传热传质。在本分析中,利用达西-福希海默流附近的非线性拉伸表面与布朗运动和热泳运动的影响。相似转换熟悉将控制模型简化为无量纲变量,并使用MATLAB求解器“bvp4c”来查找此分析的计算输出。这一分析报告了纳米流体的使用提供了更好的热特性,有助于提高传热系数。这种分析的图形是为不同的非量纲参数值创建的,而表面阻力系数、热通量、质量通量和微生物密度率都是用数字和图形来解释的。速度滑移和Forchheimer参数提供的高水平阻力导致速度曲线下降,而温度曲线增加。同时指出,生物对流佩莱特数引起了可运动微生物密度分布的衰减。此外,我们还观察到非线性拉伸片的努塞尔数比线性拉伸片的要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信