Suresh C Tyagi, Irina Smolenkova, Yuting Zheng, Mahavir Singh
{"title":"Epigenetic Control of Hyperuricemia and Gout by Gene Writer DNMT1 and RNA Editor ADAR1: Mechanism of Gout and Amyloid Dissolution in Down Syndrome.","authors":"Suresh C Tyagi, Irina Smolenkova, Yuting Zheng, Mahavir Singh","doi":"10.1007/s10528-025-11038-x","DOIUrl":null,"url":null,"abstract":"<p><p>Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid. We hypothesized that targeting epigenetic regulators and RNA editor, and inhibiting Hcy and adenosine, could alleviate DS phenotype including the congenital heart disease (CHD). DS and wild-type mice were treated with epigallocatechin gallate (EG), inhibitor of Hcy, and adenosine. Specific substrate gel zymography identified matrix metalloproteinases (MMPs)/A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) activities and MMP12/ADAMTS12 and MMP13/ADAMTS13 levels were assessed via gel zymography. Cardiac levels of DNMT1, ADAR, tissue inhibitor of metalloproteinase 1 (TIMP1), SAHH, and ten-eleven translocator (TET2), along with hydroxymethylation (a gene eraser), were measured. Calcium urate deposits in heart tissue suggested gout mechanism in DS. Robust amyloid fibers in DS mouse brain cortex were most likely dissolved by ADAMTS as its levels were elevated in tissues, with a corresponding decrease in TIMP1 in the EG group. It appears that triplication of down syndrome cell adhesion molecule (DSCAM) and cell adhesion molecule 1 (CAM1) fragment also help dissolve amyloid fibers, thus suggesting ADAMTS13/TIMP1 ratio could predict plaque dissolution. Our results indicate that cystathionine-β synthase (CBS) inhibitor as a potential therapy for amyloid dissolution.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11038-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid. We hypothesized that targeting epigenetic regulators and RNA editor, and inhibiting Hcy and adenosine, could alleviate DS phenotype including the congenital heart disease (CHD). DS and wild-type mice were treated with epigallocatechin gallate (EG), inhibitor of Hcy, and adenosine. Specific substrate gel zymography identified matrix metalloproteinases (MMPs)/A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) activities and MMP12/ADAMTS12 and MMP13/ADAMTS13 levels were assessed via gel zymography. Cardiac levels of DNMT1, ADAR, tissue inhibitor of metalloproteinase 1 (TIMP1), SAHH, and ten-eleven translocator (TET2), along with hydroxymethylation (a gene eraser), were measured. Calcium urate deposits in heart tissue suggested gout mechanism in DS. Robust amyloid fibers in DS mouse brain cortex were most likely dissolved by ADAMTS as its levels were elevated in tissues, with a corresponding decrease in TIMP1 in the EG group. It appears that triplication of down syndrome cell adhesion molecule (DSCAM) and cell adhesion molecule 1 (CAM1) fragment also help dissolve amyloid fibers, thus suggesting ADAMTS13/TIMP1 ratio could predict plaque dissolution. Our results indicate that cystathionine-β synthase (CBS) inhibitor as a potential therapy for amyloid dissolution.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.