CuSeO3@f-CNFs: A superoxide nanozyme for the selective nanomolar determination of the key cardiovascular biomarker, Glutathione

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL
M.G. Gopika , Beena Saraswathyamma , Mani Govindasamy
{"title":"CuSeO3@f-CNFs: A superoxide nanozyme for the selective nanomolar determination of the key cardiovascular biomarker, Glutathione","authors":"M.G. Gopika ,&nbsp;Beena Saraswathyamma ,&nbsp;Mani Govindasamy","doi":"10.1016/j.talanta.2025.127621","DOIUrl":null,"url":null,"abstract":"<div><div>Nanocomposites that mimic the characteristics of enzymes, commonly as nanozymes, can function as an efficient sensing material with high selectivity towards the targeted biological macromolecule. These nanozymes overcome of the challenges that arise when using natural enzymes as sensing material. This study presents a novel nanozyme, Copper Selenite (CuSeO<sub>3</sub>) nanoparticles mounted on f-CNF, to electrochemically determine a potential cardiovascular biomarker, Glutathione (GSH). The choice of this material is due to the well-known ability of GSH to form a complex with copper. When a Cu ion enters a healthy cell, it quickly forms a complex with GSH, which then moves to another storage molecule: either a metalloprotein or a chelator. CNF was functionalized using acid to generate functionalized-CNF to enhance biocompatibility and boost conductivity. This was done to provide many active sites for effective integration of CuSeO<sub>3</sub> in the nanocomposite preparation. The glassy carbon electrode (GCE) surface was enhanced by introducing CuSeO<sub>3</sub>@f-CNF nanocomposite, resulting in a significant increase in the current response for GSH in comparison to prior research. CuSeO<sub>3</sub>@f-CNF/GCE sensor has shown excellent sensing properties, like enhanced stability, selectivity, sensitivity, and reproducibility, for detecting and quantifying GSH. The sensor demonstrated an extensive linear detection range from 62.5 nM to 7785.0 μM, signifying one of the most comprehensive ranges documented to date. It attained a remarkable detection limit (LOD) of 17.6 nM. The sensor's performance was further tested by analyzing genuine biological fluid samples. The nanozyme-modified GCE demonstrated exceptional electrocatalytic efficiency for GSH detection, making it extremely appropriate for real-time monitoring applications.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"287 ","pages":"Article 127621"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914025001079","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocomposites that mimic the characteristics of enzymes, commonly as nanozymes, can function as an efficient sensing material with high selectivity towards the targeted biological macromolecule. These nanozymes overcome of the challenges that arise when using natural enzymes as sensing material. This study presents a novel nanozyme, Copper Selenite (CuSeO3) nanoparticles mounted on f-CNF, to electrochemically determine a potential cardiovascular biomarker, Glutathione (GSH). The choice of this material is due to the well-known ability of GSH to form a complex with copper. When a Cu ion enters a healthy cell, it quickly forms a complex with GSH, which then moves to another storage molecule: either a metalloprotein or a chelator. CNF was functionalized using acid to generate functionalized-CNF to enhance biocompatibility and boost conductivity. This was done to provide many active sites for effective integration of CuSeO3 in the nanocomposite preparation. The glassy carbon electrode (GCE) surface was enhanced by introducing CuSeO3@f-CNF nanocomposite, resulting in a significant increase in the current response for GSH in comparison to prior research. CuSeO3@f-CNF/GCE sensor has shown excellent sensing properties, like enhanced stability, selectivity, sensitivity, and reproducibility, for detecting and quantifying GSH. The sensor demonstrated an extensive linear detection range from 62.5 nM to 7785.0 μM, signifying one of the most comprehensive ranges documented to date. It attained a remarkable detection limit (LOD) of 17.6 nM. The sensor's performance was further tested by analyzing genuine biological fluid samples. The nanozyme-modified GCE demonstrated exceptional electrocatalytic efficiency for GSH detection, making it extremely appropriate for real-time monitoring applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信