Design and Synthesis of Tetrahydropyrrolo[3,4-c]Pyrazole Sigma-1 Receptor Ligands.

IF 3.6 4区 医学 Q2 CHEMISTRY, MEDICINAL
ChemMedChem Pub Date : 2025-01-30 DOI:10.1002/cmdc.202401015
Giuseppe Cosentino, Maria Dichiara, Giuliana Costanzo, Alessandro Coco, Lorella Pasquinucci, Agostino Marrazzo, Antonio Rescifina, Emanuele Amata
{"title":"Design and Synthesis of Tetrahydropyrrolo[3,4-c]Pyrazole Sigma-1 Receptor Ligands.","authors":"Giuseppe Cosentino, Maria Dichiara, Giuliana Costanzo, Alessandro Coco, Lorella Pasquinucci, Agostino Marrazzo, Antonio Rescifina, Emanuele Amata","doi":"10.1002/cmdc.202401015","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a series of tetrahydropyrrolo[3,4-c]pyrazole-based compounds designed as sigma-1 receptor (S1R) ligands, focusing on optimizing affinity and reducing off-target effects. We synthesized various derivatives from commercially available precursors and, through radioligand binding assays, assessed their binding affinity for S1R and sigma-2 receptor (S2R). Compound 19 (AD417), containing a benzyl group and an amide substituent, demonstrated notable S1R affinity (K<sub>i</sub>=75 nM) with 6-fold selectivity over S2R. Modifications on the pyrrolidine nitrogen were crucial in enhancing receptor interaction, as the protonated nitrogen likely interacts with Glu172 within the S1R binding site. Furthermore, to address hERG potassium ion channel inhibition, a known limitation in S1R drug development, we evaluated compound 19's cardiotoxicity potential. With an experimental hERG IC<sub>50</sub> of 5.8 μM, significantly higher than verapamil's IC<sub>50</sub> of 0.41 μM, and haloperidol's IC<sub>50</sub> of 0.16 μM, compound 19 showed a safer profile, suggesting a reduced risk of cardiotoxicity. These findings underscore the role of nitrogen accessibility, structural flexibility, and functional group modifications in optimizing S1R ligand interactions and provide a promising foundation for developing safer S1R-targeted therapeutics with minimized hERG-related risks.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202401015"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202401015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a series of tetrahydropyrrolo[3,4-c]pyrazole-based compounds designed as sigma-1 receptor (S1R) ligands, focusing on optimizing affinity and reducing off-target effects. We synthesized various derivatives from commercially available precursors and, through radioligand binding assays, assessed their binding affinity for S1R and sigma-2 receptor (S2R). Compound 19 (AD417), containing a benzyl group and an amide substituent, demonstrated notable S1R affinity (Ki=75 nM) with 6-fold selectivity over S2R. Modifications on the pyrrolidine nitrogen were crucial in enhancing receptor interaction, as the protonated nitrogen likely interacts with Glu172 within the S1R binding site. Furthermore, to address hERG potassium ion channel inhibition, a known limitation in S1R drug development, we evaluated compound 19's cardiotoxicity potential. With an experimental hERG IC50 of 5.8 μM, significantly higher than verapamil's IC50 of 0.41 μM, and haloperidol's IC50 of 0.16 μM, compound 19 showed a safer profile, suggesting a reduced risk of cardiotoxicity. These findings underscore the role of nitrogen accessibility, structural flexibility, and functional group modifications in optimizing S1R ligand interactions and provide a promising foundation for developing safer S1R-targeted therapeutics with minimized hERG-related risks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemMedChem
ChemMedChem 医学-药学
CiteScore
6.70
自引率
2.90%
发文量
280
审稿时长
1 months
期刊介绍: Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs. Contents ChemMedChem publishes an attractive mixture of: Full Papers and Communications Reviews and Minireviews Patent Reviews Highlights and Concepts Book and Multimedia Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信