Competition vs. Cooperativity of I···Omorpholinyl and I···Cl-M Halogen Bonds in Cocrystals of Zinc(II) and Copper(II) Coordination Compounds Carrying Multiple Acceptor Sites.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Vinko Nemec, Ruđer Sušanj, Nea Baus Topić, Dominik Cincic
{"title":"Competition vs. Cooperativity of I···Omorpholinyl and I···Cl-M Halogen Bonds in Cocrystals of Zinc(II) and Copper(II) Coordination Compounds Carrying Multiple Acceptor Sites.","authors":"Vinko Nemec, Ruđer Sušanj, Nea Baus Topić, Dominik Cincic","doi":"10.1002/asia.202401916","DOIUrl":null,"url":null,"abstract":"<p><p>In order to explore a strategy for synthesizing halogen-bonded metal-organic cocrystals by utilizing metal complexes whose pendant chloride group and the morpholinyl oxygen atom enables halogen bonding, we have synthesized four pentacoordinated Cu(II) and Zn(II) complexes of the MCl2L general formula (L=imines prepared by the condensation reaction of 4-aminoethylmorpholine with 2-pyridinecarboxyaldehide or 2-acetylpyridine). The prepared metal complexes were further cocrystallized with selected iodoperfluorinated benzenes. Out of 20 combinations, 14 experiments yielded crystals suitable for single-crystal X-ray diffraction. Structural analysis revealed that in 7 cocrystals halogen bonds are formed both with morpholinyl oxygen as well as with chloride atoms. In 6 cocrystals only I···Cl halogen bonds are present, while only one cocrystal exclusively featured I···Omorpholinyl halogen bonds. We observed 5 halogen bonding motifs to the MCl2 moiety, in which each chloride atom can be an acceptor of one halogen bond, two, or none at all. The most common motif in our work (6 cocrystals) is where one chlorine atom is an acceptor of one halogen bond, while the other chlorine atom does not participate in halogen bonding. The crystal packing in the prepared cocrystals is directed by halogen bonded architectures which are either zero-, one- or two-dimensional.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401916"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401916","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to explore a strategy for synthesizing halogen-bonded metal-organic cocrystals by utilizing metal complexes whose pendant chloride group and the morpholinyl oxygen atom enables halogen bonding, we have synthesized four pentacoordinated Cu(II) and Zn(II) complexes of the MCl2L general formula (L=imines prepared by the condensation reaction of 4-aminoethylmorpholine with 2-pyridinecarboxyaldehide or 2-acetylpyridine). The prepared metal complexes were further cocrystallized with selected iodoperfluorinated benzenes. Out of 20 combinations, 14 experiments yielded crystals suitable for single-crystal X-ray diffraction. Structural analysis revealed that in 7 cocrystals halogen bonds are formed both with morpholinyl oxygen as well as with chloride atoms. In 6 cocrystals only I···Cl halogen bonds are present, while only one cocrystal exclusively featured I···Omorpholinyl halogen bonds. We observed 5 halogen bonding motifs to the MCl2 moiety, in which each chloride atom can be an acceptor of one halogen bond, two, or none at all. The most common motif in our work (6 cocrystals) is where one chlorine atom is an acceptor of one halogen bond, while the other chlorine atom does not participate in halogen bonding. The crystal packing in the prepared cocrystals is directed by halogen bonded architectures which are either zero-, one- or two-dimensional.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信