Label-free electrochemical immunoassay for ultra-sensitive detection of PSA utilizing gold nanoparticles/polyhedral hollow CoCu bimetallic sulfide nanostructure as a dual signal amplification platform.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mozhgan Shohani, Marzieh Sadeghi, Hosna Ehzari
{"title":"Label-free electrochemical immunoassay for ultra-sensitive detection of PSA utilizing gold nanoparticles/polyhedral hollow CoCu bimetallic sulfide nanostructure as a dual signal amplification platform.","authors":"Mozhgan Shohani, Marzieh Sadeghi, Hosna Ehzari","doi":"10.1016/j.ijbiomac.2025.140307","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces the development of a highly sensitive label-free electrochemical immunosensor specifically designed to detect prostate-specific antigen (PSA). A glassy carbon electrode (GCE) coated with Au nanoparticles/polyhedral hollow CoCu bimetallic sulfide (CuCo<sub>2</sub>S<sub>4</sub>) was employed as a sensing interface for the fixation of the monoclonal anti-PSA antibody. The nanoarchitectures enhanced the capacity for loading prostate-specific antibodies (Ab) and effectually boosted electrical conductivity leading to enhance the electrochemical signal and greater sensitivity for the detection of PSA. The electrochemical behavior of the engineered sensor was researched via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The response of the fabricated immunosensor manifested a linearized correlation with PSA concentration, spanning from 50.0 fg/ml to 500.0 ng/ml, with a minimal detection limit (DPV: 19.0 fg/ml, EIS: 14.0 fg/ml) and superior stability. The morphological and structural features of the engineered nanomaterials were analyzed using a range of techniques, including field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The proposed immunosensor was utilized for the meticulous and ultra-sensitive analysis of PSA levels in serum specimens, providing results that align satisfactorily with those from the enzyme-linked immunosorbent assay (ELISA) the benchmark protocol. In conclusion, these outcomes underscore the potential utility of the developed immunosensor for prostate cancer screening in its initial stages.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140307"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140307","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces the development of a highly sensitive label-free electrochemical immunosensor specifically designed to detect prostate-specific antigen (PSA). A glassy carbon electrode (GCE) coated with Au nanoparticles/polyhedral hollow CoCu bimetallic sulfide (CuCo2S4) was employed as a sensing interface for the fixation of the monoclonal anti-PSA antibody. The nanoarchitectures enhanced the capacity for loading prostate-specific antibodies (Ab) and effectually boosted electrical conductivity leading to enhance the electrochemical signal and greater sensitivity for the detection of PSA. The electrochemical behavior of the engineered sensor was researched via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The response of the fabricated immunosensor manifested a linearized correlation with PSA concentration, spanning from 50.0 fg/ml to 500.0 ng/ml, with a minimal detection limit (DPV: 19.0 fg/ml, EIS: 14.0 fg/ml) and superior stability. The morphological and structural features of the engineered nanomaterials were analyzed using a range of techniques, including field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The proposed immunosensor was utilized for the meticulous and ultra-sensitive analysis of PSA levels in serum specimens, providing results that align satisfactorily with those from the enzyme-linked immunosorbent assay (ELISA) the benchmark protocol. In conclusion, these outcomes underscore the potential utility of the developed immunosensor for prostate cancer screening in its initial stages.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信