{"title":"Untwisting Strategy of MOF Nanosheets in Ultrathin Film Membrane for High Molecular Separation Performance","authors":"Li-Hao Xu, Qiao Zhang, Shen-Hui Li, Fu-Xue Chen, Zhi-Ping Zhao","doi":"10.1002/smll.202410067","DOIUrl":null,"url":null,"abstract":"<p>Oriented 2D metal-organic framework (MOF) membranes hold considerable promise for industrial separation processes. Nevertheless, the lattice misalignment caused by the twisted stacking of 2D nanosheets reduces the in-plane pore size and exerts a significant impact on the membrane separation performance. Precisely regulating the stacking pattern of oriented 2D MOF membranes remains a significant challenge. Here, a scalable scrape-coating technique supplemented by a vapor untwisting strategy is proposed to directly construct non-twisted and ultrathin Zr-BTB membranes (Zr-BTB-M) on polyvinylidene fluoride (PVDF) substrates. The Zr-BTB nanosheets are induced to undergo lattice reorganization during the coating process, resulting in highly overlapped lattices and the largest in-plane pore channels. The exceptional butyl acetate selective adsorption capacity of non-twisted Zr-BTB, combined with its provision of highly ordered vertical penetrating pathways, significantly enhances molecular transport. After facile polydimethylsiloxane (PDMS) coating, the pervaporation separation index of the PDMS/Zr-BTB-M/PVDF membrane is found to be 9.74 times higher than that of conventional PDMS/PVDF membranes, paving the way for innovative, high-efficiency, energy-saving membrane separation technologies.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 9","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202410067","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Oriented 2D metal-organic framework (MOF) membranes hold considerable promise for industrial separation processes. Nevertheless, the lattice misalignment caused by the twisted stacking of 2D nanosheets reduces the in-plane pore size and exerts a significant impact on the membrane separation performance. Precisely regulating the stacking pattern of oriented 2D MOF membranes remains a significant challenge. Here, a scalable scrape-coating technique supplemented by a vapor untwisting strategy is proposed to directly construct non-twisted and ultrathin Zr-BTB membranes (Zr-BTB-M) on polyvinylidene fluoride (PVDF) substrates. The Zr-BTB nanosheets are induced to undergo lattice reorganization during the coating process, resulting in highly overlapped lattices and the largest in-plane pore channels. The exceptional butyl acetate selective adsorption capacity of non-twisted Zr-BTB, combined with its provision of highly ordered vertical penetrating pathways, significantly enhances molecular transport. After facile polydimethylsiloxane (PDMS) coating, the pervaporation separation index of the PDMS/Zr-BTB-M/PVDF membrane is found to be 9.74 times higher than that of conventional PDMS/PVDF membranes, paving the way for innovative, high-efficiency, energy-saving membrane separation technologies.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.