Jonghee Eun , Jeongseop Kim , Tae-Eun Kim , Ja Wook Koo , Namsun Chou
{"title":"ECoGScope: An integrated platform for real-time Electrophysiology and fluorescence imaging","authors":"Jonghee Eun , Jeongseop Kim , Tae-Eun Kim , Ja Wook Koo , Namsun Chou","doi":"10.1016/j.bios.2025.117196","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we present ECoGScope, a versatile neural interface platform designed to integrate multiple functions for advancing neural network research. ECoGScope combines an electrocorticography (ECoG) electrode array with a commercial microendoscope, enabling simultaneous recording of ECoG signals and fluorescence imaging. The electrode array, constructed from highly flexible and transparent polymers, ensures conformal contact with the brain surface, allowing unobstructed optical monitoring of neural activity alongside electrophysiological recordings. A key innovation is the compact connection module, which securely integrates the ECoG array and microendoscope while minimizing interference with animal behavior. The device was successfully tested in the visual, somatosensory, and frontal cortex, demonstrating its capability for simultaneous electrophysiological and fluorescent measurements. These results highlight the potential of the ECoGScope platform to advance the development of multifunctional tools for studying brain function and addressing neurological disorders.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"274 ","pages":"Article 117196"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325000703","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we present ECoGScope, a versatile neural interface platform designed to integrate multiple functions for advancing neural network research. ECoGScope combines an electrocorticography (ECoG) electrode array with a commercial microendoscope, enabling simultaneous recording of ECoG signals and fluorescence imaging. The electrode array, constructed from highly flexible and transparent polymers, ensures conformal contact with the brain surface, allowing unobstructed optical monitoring of neural activity alongside electrophysiological recordings. A key innovation is the compact connection module, which securely integrates the ECoG array and microendoscope while minimizing interference with animal behavior. The device was successfully tested in the visual, somatosensory, and frontal cortex, demonstrating its capability for simultaneous electrophysiological and fluorescent measurements. These results highlight the potential of the ECoGScope platform to advance the development of multifunctional tools for studying brain function and addressing neurological disorders.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.