Yu An, Zhaocun Shen, Fang Zhang, Qiuya Yang, Zihan Han, Mingjie Wang, Hongze Ma, Linjie Yu, Wei Yuan, Kunyan Sui
{"title":"Inversion of Circularly Polarized Luminescence in the Left-Handed Chitosan-Templated Co-assemblies.","authors":"Yu An, Zhaocun Shen, Fang Zhang, Qiuya Yang, Zihan Han, Mingjie Wang, Hongze Ma, Linjie Yu, Wei Yuan, Kunyan Sui","doi":"10.1002/advs.202415260","DOIUrl":null,"url":null,"abstract":"<p><p>Circularly polarized luminescence (CPL) materials are attractive due to their unique applications in fields such as 3D displays, information encryption, and chiroptical switches. Natural biomolecules-based CPL materials are gaining plenty of attention due to their chiral diversity and sustainability. However, it is still challenging to construct CPL materials with opposite CPL signs from a single natural biomolecule due to its inherent chirality. Here, chiral assemblies with opposite CPL signs using chitosan oligosaccharide (COS) and achiral luminescent dyes are successfully prepared. It is found that COS can serve as a chiral template to induce the ordered assembly of the dyes along the polymer chain through electrostatic attraction interaction. It is demonstrated experimentally that the structural planarity of the dye molecules is crucial for the formation of chiral co-assemblies. Interestingly, the left-handed COS-templated co-assemblies can emit CPL with opposite handedness, which is controlled by the helicity degree of the co-assemblies. This study not only deepens the understanding of the complex assembly of natural biomacromolecules but also provides new insights into the design and construction of CPL materials.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2415260"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202415260","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Circularly polarized luminescence (CPL) materials are attractive due to their unique applications in fields such as 3D displays, information encryption, and chiroptical switches. Natural biomolecules-based CPL materials are gaining plenty of attention due to their chiral diversity and sustainability. However, it is still challenging to construct CPL materials with opposite CPL signs from a single natural biomolecule due to its inherent chirality. Here, chiral assemblies with opposite CPL signs using chitosan oligosaccharide (COS) and achiral luminescent dyes are successfully prepared. It is found that COS can serve as a chiral template to induce the ordered assembly of the dyes along the polymer chain through electrostatic attraction interaction. It is demonstrated experimentally that the structural planarity of the dye molecules is crucial for the formation of chiral co-assemblies. Interestingly, the left-handed COS-templated co-assemblies can emit CPL with opposite handedness, which is controlled by the helicity degree of the co-assemblies. This study not only deepens the understanding of the complex assembly of natural biomacromolecules but also provides new insights into the design and construction of CPL materials.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.