Yuzhu Zhao, Shijing Zhang, Jing Li, Jie Deng, Yingxiang Liu
{"title":"Wetting and Spreading Behaviors of Impacting Metal Droplet Regulated by 2D Ultrasonic Field.","authors":"Yuzhu Zhao, Shijing Zhang, Jing Li, Jie Deng, Yingxiang Liu","doi":"10.1002/advs.202415138","DOIUrl":null,"url":null,"abstract":"<p><p>The wetting and spreading behaviors of metal droplets on solid substrates are critical aspects of additive manufacturing. However, the inherent characteristics of metal droplets, including high surface tension, elevated viscosity, and extreme temperatures, pose significant challenges for wetting and spreading on nonwetting substrates. Herein, this work proposes a strategy that employs a two-dimensional (2D) orthogonal ultrasonic field to construct a vibration deposition substrate with radial vibration amplitude gradient, thereby enhancing the wettability and adhesive strength of impacting metal droplets ejected by a piezoelectric micro-jet device. First, a 2D ultrasonic vibration device is designed based on the combination of longitudinal vibration modes. Additionally, oblique and circular vibration trajectories are synthesized. The vibration amplitude distributions and trajectories of the deposition substrate are verified utilizing the finite element method. Subsequently, the experimental results demonstrate that the contact angle is decreased by 24.7%, the spreading diameter is increased by 10.3%, and the adhesive strength is enhanced by 5.4 times compared to deposition on a static substrate. The 2D ultrasonic field facilitates the transition of metal droplets from a non-wetting state to a wetting state on the nonwetting substrate, which highlights the versatility and adaptability of ultrasonic strategy for expanding the applications of metal droplets.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2415138"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202415138","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The wetting and spreading behaviors of metal droplets on solid substrates are critical aspects of additive manufacturing. However, the inherent characteristics of metal droplets, including high surface tension, elevated viscosity, and extreme temperatures, pose significant challenges for wetting and spreading on nonwetting substrates. Herein, this work proposes a strategy that employs a two-dimensional (2D) orthogonal ultrasonic field to construct a vibration deposition substrate with radial vibration amplitude gradient, thereby enhancing the wettability and adhesive strength of impacting metal droplets ejected by a piezoelectric micro-jet device. First, a 2D ultrasonic vibration device is designed based on the combination of longitudinal vibration modes. Additionally, oblique and circular vibration trajectories are synthesized. The vibration amplitude distributions and trajectories of the deposition substrate are verified utilizing the finite element method. Subsequently, the experimental results demonstrate that the contact angle is decreased by 24.7%, the spreading diameter is increased by 10.3%, and the adhesive strength is enhanced by 5.4 times compared to deposition on a static substrate. The 2D ultrasonic field facilitates the transition of metal droplets from a non-wetting state to a wetting state on the nonwetting substrate, which highlights the versatility and adaptability of ultrasonic strategy for expanding the applications of metal droplets.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.