Temporal Association Cortex Gates Sound-Evoked Arousal from NREM Sleep.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haipeng Yu, Jincheng Wang, Ruiqi Pang, Penghui Chen, Tiantian Luo, Xuan Zhang, Yatao Liao, Chao Hu, Miaoqing Gu, Bingmin Luo, Zhiyue Shi, Mengyao Li, Yueting Zhang, Qiaoqian Wei, Wei Yuan, Hui Xie, Zhiyi Chen, Hongbang Liu, Shuancheng Ren, Xiaowei Chen, Yi Zhou
{"title":"Temporal Association Cortex Gates Sound-Evoked Arousal from NREM Sleep.","authors":"Haipeng Yu, Jincheng Wang, Ruiqi Pang, Penghui Chen, Tiantian Luo, Xuan Zhang, Yatao Liao, Chao Hu, Miaoqing Gu, Bingmin Luo, Zhiyue Shi, Mengyao Li, Yueting Zhang, Qiaoqian Wei, Wei Yuan, Hui Xie, Zhiyi Chen, Hongbang Liu, Shuancheng Ren, Xiaowei Chen, Yi Zhou","doi":"10.1002/advs.202414271","DOIUrl":null,"url":null,"abstract":"<p><p>Sound-evoked wakefulness from sleep is crucial in daily life, yet its neural mechanisms remain poorly understood. It is found that CaMKIIα+ neurons in the temporal association cortex (TeA) of mice are not essential for natural awakening from sleep. However, optogenetic activation of these neurons reliably induces wakefulness from non-rapid eye movement (NREM) sleep but not from rapid eye movement (REM) sleep. In vivo electrophysiological and calcium recordings further demonstrated that TeA neurons are monotonically tuned to sound intensity but not frequency. More importantly, it is found that the activity of CaMKIIα+ neurons in TeA can gate sound-evoked arousal from NREM sleep, which is further confirmed by optogenetic manipulations. Further investigation reveals that the baseline excitability of TeA CaMKIIα+ neurons and the delta oscillations in the electroencephalogram are particularly important in regulating the evoked activity of TeA neurons. Anatomical and functional screening of downstream targets of TeA reveals that excitatory projections from TeA glutamatergic neurons to glutamatergic neurons in the basolateral/lateral amygdala are critical for modulating sound-evoked arousal from NREM sleep. These findings uncover a top-down regulatory circuit that selectively governs sound-evoked arousal from NREM sleep, with the TeA functioning as a key connecting cortex to subcortical regions.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2414271"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202414271","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sound-evoked wakefulness from sleep is crucial in daily life, yet its neural mechanisms remain poorly understood. It is found that CaMKIIα+ neurons in the temporal association cortex (TeA) of mice are not essential for natural awakening from sleep. However, optogenetic activation of these neurons reliably induces wakefulness from non-rapid eye movement (NREM) sleep but not from rapid eye movement (REM) sleep. In vivo electrophysiological and calcium recordings further demonstrated that TeA neurons are monotonically tuned to sound intensity but not frequency. More importantly, it is found that the activity of CaMKIIα+ neurons in TeA can gate sound-evoked arousal from NREM sleep, which is further confirmed by optogenetic manipulations. Further investigation reveals that the baseline excitability of TeA CaMKIIα+ neurons and the delta oscillations in the electroencephalogram are particularly important in regulating the evoked activity of TeA neurons. Anatomical and functional screening of downstream targets of TeA reveals that excitatory projections from TeA glutamatergic neurons to glutamatergic neurons in the basolateral/lateral amygdala are critical for modulating sound-evoked arousal from NREM sleep. These findings uncover a top-down regulatory circuit that selectively governs sound-evoked arousal from NREM sleep, with the TeA functioning as a key connecting cortex to subcortical regions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信