Huyen Thi Thanh Pham, Shohei Kuroda, Yeni Khairina, Masaaki Morikawa
{"title":"Reconstruction of a functional duckweed holobiont to reduce nutrient competition with microalgae for high-yield biomass production.","authors":"Huyen Thi Thanh Pham, Shohei Kuroda, Yeni Khairina, Masaaki Morikawa","doi":"10.1016/j.biortech.2025.132110","DOIUrl":null,"url":null,"abstract":"<p><p>Duckweed has been highlighted as an appropriate biomass for low-carbon industries because of its significantly high production rate and multiple resource value. However, the outbreak of microalgae is a practical issue that decreases duckweed production yield. This study demonstrated that the growth of the duckweed Lemna aequinoctialis from factory wastewater was enhanced by colonization with indigenous plant growth-promoting bacteria (PGPB), whereas the growth of a duckweed competitor microalga, Coelastrella sp. KC10, from the same wastewater was reduced by indigenous microalgal growth-inhibiting bacteria (MGIB). Finally, a quadruple co-culture of a synthetic duckweed holobiont, L. aequinoctialis colonized by both KLaR20 (PGPB) and KLaR16 (MGIB), and Coelastrella sp. KC10 successfully recovered the duckweed production level by 117.5% in frond number and 84.5% in dry weight in the absence of microalgae. This case study demonstrates for the first time that duckweed holobionts can be reconstructed and enforced to antagonize growth competitor microalgae.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132110"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132110","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Duckweed has been highlighted as an appropriate biomass for low-carbon industries because of its significantly high production rate and multiple resource value. However, the outbreak of microalgae is a practical issue that decreases duckweed production yield. This study demonstrated that the growth of the duckweed Lemna aequinoctialis from factory wastewater was enhanced by colonization with indigenous plant growth-promoting bacteria (PGPB), whereas the growth of a duckweed competitor microalga, Coelastrella sp. KC10, from the same wastewater was reduced by indigenous microalgal growth-inhibiting bacteria (MGIB). Finally, a quadruple co-culture of a synthetic duckweed holobiont, L. aequinoctialis colonized by both KLaR20 (PGPB) and KLaR16 (MGIB), and Coelastrella sp. KC10 successfully recovered the duckweed production level by 117.5% in frond number and 84.5% in dry weight in the absence of microalgae. This case study demonstrates for the first time that duckweed holobionts can be reconstructed and enforced to antagonize growth competitor microalgae.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.