Understanding the Ligand Influence in the Multistep Reaction of Diazoalkanes with Palladium Complexes Leading to Carbene-Aryl Coupling.

IF 2.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Organometallics Pub Date : 2025-01-10 eCollection Date: 2025-01-27 DOI:10.1021/acs.organomet.4c00439
Francisco Villalba, Ana C Albéniz
{"title":"Understanding the Ligand Influence in the Multistep Reaction of Diazoalkanes with Palladium Complexes Leading to Carbene-Aryl Coupling.","authors":"Francisco Villalba, Ana C Albéniz","doi":"10.1021/acs.organomet.4c00439","DOIUrl":null,"url":null,"abstract":"<p><p>The reaction of diphosphino aryl complexes [Pd(C<sub>6</sub>F<sub>5</sub>)(L-L)(NCMe)](BF<sub>4</sub>) (L-L = dppe, dppp, dppb) with diazoalkanes N<sub>2</sub>CHR (<i>R</i> = -CH=CHPh, Ph) leads to η<sup>3</sup>-allyl or η<sup>3</sup>-benzyl palladium derivatives that are the organometallic products resulting from carbene-aryl coupling. The experimental trend shows that the reaction is favored for dppe > dppp > dppb. It involves several consecutive steps, i.e., diazoalkane coordination, nitrogen extrusion to give a Pd-carbene, and migratory insertion, which are experimentally inseparable, but they can be studied with the help of DFT calculations. The bulkiness and bite angle of the ligand exert a large influence in the relative rate of the steps involved in the reaction, and we have found that carbene formation by N<sub>2</sub> extrusion is the step with the largest barrier for dppe. In contrast, the coordination of the diazoalkane is the most energy-demanding step for the larger dppp and dppb diphosphines. Thus, ligand substitution controls the rate, an important elemental step rarely considered in mechanistic studies of carbene cross coupling reactions. Since diazoalkanes are the most common carbene precursors, either directly or generated from hydrazones, the choice of ligand can be very important to facilitate the entrance of the carbene precursor in the catalytic cycle.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"44 2","pages":"394-402"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776105/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organometallics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.organomet.4c00439","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The reaction of diphosphino aryl complexes [Pd(C6F5)(L-L)(NCMe)](BF4) (L-L = dppe, dppp, dppb) with diazoalkanes N2CHR (R = -CH=CHPh, Ph) leads to η3-allyl or η3-benzyl palladium derivatives that are the organometallic products resulting from carbene-aryl coupling. The experimental trend shows that the reaction is favored for dppe > dppp > dppb. It involves several consecutive steps, i.e., diazoalkane coordination, nitrogen extrusion to give a Pd-carbene, and migratory insertion, which are experimentally inseparable, but they can be studied with the help of DFT calculations. The bulkiness and bite angle of the ligand exert a large influence in the relative rate of the steps involved in the reaction, and we have found that carbene formation by N2 extrusion is the step with the largest barrier for dppe. In contrast, the coordination of the diazoalkane is the most energy-demanding step for the larger dppp and dppb diphosphines. Thus, ligand substitution controls the rate, an important elemental step rarely considered in mechanistic studies of carbene cross coupling reactions. Since diazoalkanes are the most common carbene precursors, either directly or generated from hydrazones, the choice of ligand can be very important to facilitate the entrance of the carbene precursor in the catalytic cycle.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Organometallics
Organometallics 化学-无机化学与核化学
CiteScore
5.60
自引率
7.10%
发文量
382
审稿时长
1.7 months
期刊介绍: Organometallics is the flagship journal of organometallic chemistry and records progress in one of the most active fields of science, bridging organic and inorganic chemistry. The journal publishes Articles, Communications, Reviews, and Tutorials (instructional overviews) that depict research on the synthesis, structure, bonding, chemical reactivity, and reaction mechanisms for a variety of applications, including catalyst design and catalytic processes; main-group, transition-metal, and lanthanide and actinide metal chemistry; synthetic aspects of polymer science and materials science; and bioorganometallic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信