Jonathan J Chang, Kelsey Brew, Jamie A G Hamilton, Varun Kumar, José A Diaz, Shuichi Takayama
{"title":"Bioprinted Micro-Clots for Kinetic Analysis of Endothelial Cell-Mediated Fibrinolysis.","authors":"Jonathan J Chang, Kelsey Brew, Jamie A G Hamilton, Varun Kumar, José A Diaz, Shuichi Takayama","doi":"10.1002/adhm.202403043","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular hypo-fibrinolysis is a historically underappreciated and understudied aspect of venous thromboembolism (VTE). This paper describes the development of a micro-clot dissolution assay for quantifying the fibrinolytic capacity of endothelial cells - a key driver of VTE development. This assay is enabled using aqueous two-phase systems (ATPS) to bioprint microscale fibrin clots over human umbilical vein endothelial cells (HUVECs). Importantly, these micro-clots are orders of magnitude smaller than conventional fibrin constructs and allow HUVEC-produced plasminogen activators to mediate visually quantifiable fibrinolysis. Using live-cell time-lapse imaging, micro-clot dissolution by HUVECs is tracked, and fibrinolysis kinetics are quantified. The sensitivity of cell-driven fibrinolysis to various stimuli is rapidly tested. The physiological relevance of this convenient high-throughput assay is illustrated through treatments with lipopolysaccharide (LPS) and rosuvastatin that elicit anti- and pro-fibrinolytic responses, respectively. Furthermore, treatment with baricitinib, an anti-inflammatory therapeutic found to increase cardiovascular risks after market approval, provokes an anti-fibrinolytic response - which highlights the potential role of endothelial cells in increasing VTE risk for patients receiving this drug. This endothelial cell fibrinolysis assay provides a high-throughput and versatile drug testing platform - potentially allowing for early preclinical identification of therapeutics that may beneficially enhance or adversely impair endothelial fibrinolysis.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403043"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403043","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular hypo-fibrinolysis is a historically underappreciated and understudied aspect of venous thromboembolism (VTE). This paper describes the development of a micro-clot dissolution assay for quantifying the fibrinolytic capacity of endothelial cells - a key driver of VTE development. This assay is enabled using aqueous two-phase systems (ATPS) to bioprint microscale fibrin clots over human umbilical vein endothelial cells (HUVECs). Importantly, these micro-clots are orders of magnitude smaller than conventional fibrin constructs and allow HUVEC-produced plasminogen activators to mediate visually quantifiable fibrinolysis. Using live-cell time-lapse imaging, micro-clot dissolution by HUVECs is tracked, and fibrinolysis kinetics are quantified. The sensitivity of cell-driven fibrinolysis to various stimuli is rapidly tested. The physiological relevance of this convenient high-throughput assay is illustrated through treatments with lipopolysaccharide (LPS) and rosuvastatin that elicit anti- and pro-fibrinolytic responses, respectively. Furthermore, treatment with baricitinib, an anti-inflammatory therapeutic found to increase cardiovascular risks after market approval, provokes an anti-fibrinolytic response - which highlights the potential role of endothelial cells in increasing VTE risk for patients receiving this drug. This endothelial cell fibrinolysis assay provides a high-throughput and versatile drug testing platform - potentially allowing for early preclinical identification of therapeutics that may beneficially enhance or adversely impair endothelial fibrinolysis.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.