Julian Gonzalez-Rubio, Hannah Kubiza, Yong Xu, Hiltrud Koenigs-Werner, Mona Sophie Schmitz, Michaela Schedel, Christian Apel, Stefan Jockenhoevel, Christian G Cornelissen, Anja Lena Thiebes
{"title":"Pericytes Promote More Vascularization than Stromal Cells via an Interleukin-6-Dependent Mechanism in Microfluidic Chips.","authors":"Julian Gonzalez-Rubio, Hannah Kubiza, Yong Xu, Hiltrud Koenigs-Werner, Mona Sophie Schmitz, Michaela Schedel, Christian Apel, Stefan Jockenhoevel, Christian G Cornelissen, Anja Lena Thiebes","doi":"10.1002/advs.202408131","DOIUrl":null,"url":null,"abstract":"<p><p>Pericytes are a key player in vascularization, protecting endothelial cells from external harm and promoting the formation of new vessels when necessary. However, pericytic identity and its relationship with other cell types, such as mesenchymal stromal/stem cells, is highly debated. This study compares the role of pericytes and unselected stromal cells in vascularization using multichannel microfluidic chips. In both angiogenesis and vasculogenesis, pericytes promote more vessel formation than stromal cells. Pericytes can wrap around endothelial vessels acting as mural cells, while stromal cells remain separated. Whole-transcriptome sequencing confirms an upregulation of pro-vascularization genes in endothelial cell-pericyte co-cultures, while metabolism increases and inflammation decreases in stromal cell co-cultures. Treatment of stromal-endothelial cell co-cultures with either conditioned media or isolated extracellular vesicles from pericytes replicates the increase in vasculogenesis of the direct co-cultures. Cytokine quantification reveals that interleukin 6 (IL-6) is significantly increased in pericyte conditions. Blocking it with siltuximab results in a reduction of pericyte vasculogenic potential comparable to stromal cell levels, revealing that pericyte pro-vascularization is mediated by IL-6. This study provides new insights into the relationship between pericytes and endothelial cells and the elusive identity of mesenchymal stromal cells. These findings are relevant for both vascular biology and tissue engineering.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2408131"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202408131","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pericytes are a key player in vascularization, protecting endothelial cells from external harm and promoting the formation of new vessels when necessary. However, pericytic identity and its relationship with other cell types, such as mesenchymal stromal/stem cells, is highly debated. This study compares the role of pericytes and unselected stromal cells in vascularization using multichannel microfluidic chips. In both angiogenesis and vasculogenesis, pericytes promote more vessel formation than stromal cells. Pericytes can wrap around endothelial vessels acting as mural cells, while stromal cells remain separated. Whole-transcriptome sequencing confirms an upregulation of pro-vascularization genes in endothelial cell-pericyte co-cultures, while metabolism increases and inflammation decreases in stromal cell co-cultures. Treatment of stromal-endothelial cell co-cultures with either conditioned media or isolated extracellular vesicles from pericytes replicates the increase in vasculogenesis of the direct co-cultures. Cytokine quantification reveals that interleukin 6 (IL-6) is significantly increased in pericyte conditions. Blocking it with siltuximab results in a reduction of pericyte vasculogenic potential comparable to stromal cell levels, revealing that pericyte pro-vascularization is mediated by IL-6. This study provides new insights into the relationship between pericytes and endothelial cells and the elusive identity of mesenchymal stromal cells. These findings are relevant for both vascular biology and tissue engineering.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.