On-Demand Photoactivation of DNA-Based Motor Motion.

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-02-11 Epub Date: 2025-01-30 DOI:10.1021/acsnano.4c13068
Selma Piranej, Hiroaki Ogasawara, Luona Zhang, Krista Jackson, Alisina Bazrafshan, Khalid Salaita
{"title":"On-Demand Photoactivation of DNA-Based Motor Motion.","authors":"Selma Piranej, Hiroaki Ogasawara, Luona Zhang, Krista Jackson, Alisina Bazrafshan, Khalid Salaita","doi":"10.1021/acsnano.4c13068","DOIUrl":null,"url":null,"abstract":"<p><p>A major challenge in the field of synthetic motors relates to mimicking the precise, <i>on-demand</i> motion of biological motor proteins, which mediates processes such as cargo transport, cell locomotion, and cell division. To address this challenge, we developed a system to control the motion of DNA-based synthetic motors using light. DNA motors are composed of a central chassis particle modified with DNA \"legs\" that hybridize to RNA \"fuel\", and move upon enzymatic consumption of RNA. We first concealed RNA fuel sites using photocleavable oligonucleotides that block DNA leg binding. Upon UV activation, the RNA blocking strands dissociate, exposing the RNA fuel and initiating active, directional motion. We also created a \"brake\" system using photocleavable DNA stalling strands, anchoring the motors until UV light removes the \"brake\" while simultaneously \"fueling\" the motors, initiating spatiotemporally controlled stop → go motion. Additionally, we modified the \"brake\" system to activate the motors via a chemical input, while an optical input is required to fuel the motors. This dual-input approach, functioning as an \"AND\" gate, demonstrates the potential for DNA motors to perform light-triggered computational tasks. Our work provides a proof of concept for enhancing the complexity and functionality of synthetic motors.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"5363-5375"},"PeriodicalIF":16.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13068","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A major challenge in the field of synthetic motors relates to mimicking the precise, on-demand motion of biological motor proteins, which mediates processes such as cargo transport, cell locomotion, and cell division. To address this challenge, we developed a system to control the motion of DNA-based synthetic motors using light. DNA motors are composed of a central chassis particle modified with DNA "legs" that hybridize to RNA "fuel", and move upon enzymatic consumption of RNA. We first concealed RNA fuel sites using photocleavable oligonucleotides that block DNA leg binding. Upon UV activation, the RNA blocking strands dissociate, exposing the RNA fuel and initiating active, directional motion. We also created a "brake" system using photocleavable DNA stalling strands, anchoring the motors until UV light removes the "brake" while simultaneously "fueling" the motors, initiating spatiotemporally controlled stop → go motion. Additionally, we modified the "brake" system to activate the motors via a chemical input, while an optical input is required to fuel the motors. This dual-input approach, functioning as an "AND" gate, demonstrates the potential for DNA motors to perform light-triggered computational tasks. Our work provides a proof of concept for enhancing the complexity and functionality of synthetic motors.

Abstract Image

基于dna的运动的按需光激活。
合成马达领域的一个主要挑战涉及到模仿精确的、按需运动的生物马达蛋白,它介导诸如货物运输、细胞运动和细胞分裂等过程。为了应对这一挑战,我们开发了一种系统,利用光来控制基于dna的合成马达的运动。DNA马达由一个被DNA“腿”修饰的中心底盘粒子组成,它与RNA“燃料”杂交,并在酶促RNA消耗的情况下移动。我们首先使用阻断DNA腿结合的光可切割寡核苷酸来隐藏RNA燃料位点。在紫外线激活后,RNA阻断链解离,暴露RNA燃料并启动主动的定向运动。我们也创造了一个“刹车”系统,使用光可切割的DNA停止链,锚定马达,直到紫外线去除“刹车”,同时“加油”马达,启动时空控制的停止→前进运动。此外,我们修改了“刹车”系统,通过化学输入激活马达,而光输入则需要为马达提供燃料。这种双输入方法,作为“与”门的功能,证明了DNA马达执行光触发计算任务的潜力。我们的工作为提高合成电机的复杂性和功能性提供了一个概念证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信