Guowei Tang, Libo Men, Yilin Wang, Rong Xu, Yucan Peng
{"title":"Lithium Deposition Mechanism under Different Thermal Conditions Unraveled via an Optimized Phase Field Model.","authors":"Guowei Tang, Libo Men, Yilin Wang, Rong Xu, Yucan Peng","doi":"10.1021/acs.nanolett.4c06505","DOIUrl":null,"url":null,"abstract":"<p><p>As one of the most important physical fields for battery operation, the regulatory effect of temperature on the growth of lithium dendrites should be studied. In this paper, we develop an optimized phase field model to explore the effect of temperature on the growth of Li dendrites in Li metal batteries. We incorporated full lithium deposition kinetics, including atom diffusion and solid electrolyte interface restriction on interface kinetics, into the model and revealed their significance in determining the transformation of the lithium deposition morphology from moss-like to dendrite-like. We found that a high temperature or dispersed hot spots are more conducive to stable battery operation than a low temperature or concentrated hot spots due to the enhanced diffusion kinetics at the high temperature and the more uniform temperature distribution of dispersed hot spots. We believe our work can provide a useful tool for further exploring the thermal effect on stable lithium metal battery operation.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"2561-2567"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06505","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As one of the most important physical fields for battery operation, the regulatory effect of temperature on the growth of lithium dendrites should be studied. In this paper, we develop an optimized phase field model to explore the effect of temperature on the growth of Li dendrites in Li metal batteries. We incorporated full lithium deposition kinetics, including atom diffusion and solid electrolyte interface restriction on interface kinetics, into the model and revealed their significance in determining the transformation of the lithium deposition morphology from moss-like to dendrite-like. We found that a high temperature or dispersed hot spots are more conducive to stable battery operation than a low temperature or concentrated hot spots due to the enhanced diffusion kinetics at the high temperature and the more uniform temperature distribution of dispersed hot spots. We believe our work can provide a useful tool for further exploring the thermal effect on stable lithium metal battery operation.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.