Yu Zhang, Ying Li, Xinyu Chen, Kai Liu, Jie Liu, Yongchun Zeng
{"title":"Facile Fabrication of Binary-Structured Fibrous Membranes with Antifouling and Flame-Retardant Properties for Durable Water/Oil Separation.","authors":"Yu Zhang, Ying Li, Xinyu Chen, Kai Liu, Jie Liu, Yongchun Zeng","doi":"10.1021/acsami.4c21888","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane fouling from dispersed droplets during water/oil separation undermines performance and limits long-term use. Additionally, there is an urgent need for flame-retardant fibrous membranes capable of purifying high-temperature polluted oils. Inspired by the binary structure of taro leaves, this study introduces a novel fibrous membrane with both antifouling and flame-retardant properties for water/oil treatment. Eco-friendly cellulose acetate (CA) and multifunctional thermoplastic polyurethane (TPU) were used to construct a microfiber-based substrate membrane via electrospinning. A TPU/ammonium polyphosphate (APP) nanofiber layer with a beads-on-string structure was then electrosprayed onto the substrate as a functional layer. This binary-structured composite membrane leverages the adhesive properties of TPU within both the base microfibers and the functional nanofibers, enhancing stability and structural integrity. The functional layer's re-entrant structure effectively prevents dispersed droplets from adhering under the continuous phase, enabling efficient separation performance in both oil-in-water and water-in-oil emulsions. The membrane demonstrated strong antifouling properties and excellent recyclability, maintaining stable flux and a consistently high separation efficiency (>99.6%) across multiple cycles. Additionally, its flame-retardant properties allowed the membrane to self-extinguish when removed from direct flame. This study presents a novel strategy for fabricating multifunctional separation membranes, with detailed analysis of the underlying mechanisms.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21888","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane fouling from dispersed droplets during water/oil separation undermines performance and limits long-term use. Additionally, there is an urgent need for flame-retardant fibrous membranes capable of purifying high-temperature polluted oils. Inspired by the binary structure of taro leaves, this study introduces a novel fibrous membrane with both antifouling and flame-retardant properties for water/oil treatment. Eco-friendly cellulose acetate (CA) and multifunctional thermoplastic polyurethane (TPU) were used to construct a microfiber-based substrate membrane via electrospinning. A TPU/ammonium polyphosphate (APP) nanofiber layer with a beads-on-string structure was then electrosprayed onto the substrate as a functional layer. This binary-structured composite membrane leverages the adhesive properties of TPU within both the base microfibers and the functional nanofibers, enhancing stability and structural integrity. The functional layer's re-entrant structure effectively prevents dispersed droplets from adhering under the continuous phase, enabling efficient separation performance in both oil-in-water and water-in-oil emulsions. The membrane demonstrated strong antifouling properties and excellent recyclability, maintaining stable flux and a consistently high separation efficiency (>99.6%) across multiple cycles. Additionally, its flame-retardant properties allowed the membrane to self-extinguish when removed from direct flame. This study presents a novel strategy for fabricating multifunctional separation membranes, with detailed analysis of the underlying mechanisms.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.