Durable Bio-Based Hydrophobic Recrystallized Wax Coatings.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Santhra Krishnan P, Sriharitha Rowthu, Sreeram K Kalpathy
{"title":"Durable Bio-Based Hydrophobic Recrystallized Wax Coatings.","authors":"Santhra Krishnan P, Sriharitha Rowthu, Sreeram K Kalpathy","doi":"10.1021/acsabm.4c01672","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-waxes derived from natural species are beneficial for preparing non-wetting surfaces. Herein, the wetting properties of recrystallized wax coatings extracted from three naturally occurring superhydrophobic species-, Lotus leaves, Bauhinia leaves, and Periwinkle flowers, are reported as a function of recrystallization time, temperature, pH of water, and impact pressure. Lotus wax coatings showcased nanorods similar to that of Lotus leaves, while Periwinkle and Bauhinia waxes could not replicate micro-/nanofeatures from their respective natural species. Lotus wax coatings exhibited water contact angles (WCAs) of ∼150°, roll-off angles (RAs) of ∼8°, and self-cleaning properties. On the contrary, both Periwinkle and Bauhinia waxes showed WCAs of only ∼110°. Nevertheless, all coatings demonstrated remarkable temporal stability over 180 days, retaining their hydrophobicity. They also exhibit excellent thermal stability up to 100 °C and chemical stability for pH variations from 2.6 to 11.5. Furthermore, they withstand the impact of 3000 water droplets without losing their hydrophobicity. All three wax coatings showed very low moisture absorption coefficients in the order Periwinkle (5.5 × 10<sup>-4</sup> wt %/day) < Bauhinia (6.75 × 10<sup>-4</sup> wt %/day) < Lotus (1.075 × 10<sup>-3</sup> wt %/day), making them highly effective for moisture resistant applications such as food packaging, protective wood finishes, etc.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Bio-waxes derived from natural species are beneficial for preparing non-wetting surfaces. Herein, the wetting properties of recrystallized wax coatings extracted from three naturally occurring superhydrophobic species-, Lotus leaves, Bauhinia leaves, and Periwinkle flowers, are reported as a function of recrystallization time, temperature, pH of water, and impact pressure. Lotus wax coatings showcased nanorods similar to that of Lotus leaves, while Periwinkle and Bauhinia waxes could not replicate micro-/nanofeatures from their respective natural species. Lotus wax coatings exhibited water contact angles (WCAs) of ∼150°, roll-off angles (RAs) of ∼8°, and self-cleaning properties. On the contrary, both Periwinkle and Bauhinia waxes showed WCAs of only ∼110°. Nevertheless, all coatings demonstrated remarkable temporal stability over 180 days, retaining their hydrophobicity. They also exhibit excellent thermal stability up to 100 °C and chemical stability for pH variations from 2.6 to 11.5. Furthermore, they withstand the impact of 3000 water droplets without losing their hydrophobicity. All three wax coatings showed very low moisture absorption coefficients in the order Periwinkle (5.5 × 10-4 wt %/day) < Bauhinia (6.75 × 10-4 wt %/day) < Lotus (1.075 × 10-3 wt %/day), making them highly effective for moisture resistant applications such as food packaging, protective wood finishes, etc.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信