3D-Printed PCL/SrHA@DFO Bone Tissue Engineering Scaffold with Bone Regeneration and Vascularization Function.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2025-02-17 Epub Date: 2025-01-29 DOI:10.1021/acsabm.4c01866
Kai Chen, Liu Luo, Ruolan Tao, Muzi Li, Shuqi Qu, Xiaofang Wu, Xinyue Zhang, Haiyan Feng, Ziqiang Zhu, Dekun Zhang
{"title":"3D-Printed PCL/SrHA@DFO Bone Tissue Engineering Scaffold with Bone Regeneration and Vascularization Function.","authors":"Kai Chen, Liu Luo, Ruolan Tao, Muzi Li, Shuqi Qu, Xiaofang Wu, Xinyue Zhang, Haiyan Feng, Ziqiang Zhu, Dekun Zhang","doi":"10.1021/acsabm.4c01866","DOIUrl":null,"url":null,"abstract":"<p><p>The application of a three-dimensional (3D)-printed biological functional scaffold in the repair of bone defects is a promising strategy. In this study, strontium-containing hydroxyapatite (SrHA) powder was synthesized by the hydrothermal method, and then poly(ε-caprolactone) (PCL)/HA and PCL/SrHA composite scaffolds were prepared by the high-temperature melt extrusion 3D printing technology. The basic physical and chemical properties, in vitro biological properties, osteogenesis, and angiogenesis abilities of the scaffold were studied. The results showed that HA and SrHA were uniformly embedded in the composite scaffold, and the scaffold exhibited a 3D interconnected porous structure and rough microsurface. The in vitro release curve showed that Sr<sup>2+</sup> and Ca<sup>2+</sup> were continuously released from the PCL/SrHA scaffold. In order to verify the performance of the composite scaffold in bone regeneration, the proliferation and osteogenic differentiation of mouse embryonic osteoblasts (MC3T3E1) grown on the scaffold were evaluated. The experimental results showed that the incorporation of SrHA significantly promoted cell proliferation. Compared with the PCL/HA scaffold, the PCL/SrHA scaffold could better promote cell osteogenic differentiation. Deferoxamine (DFO) was loaded on the surface of the PCL/SrHA scaffold. By studying the proliferation, angiogenesis, and expression of osteogenesis and angiogenesis-related genes of human umbilical vein endothelial cells (HUVECs) on PCL/SrHA@DFO scaffold, it was verified that DFO had the ability to promote angiogenesis. It could induce angiogenesis in vitro in combination with Sr<sup>2+</sup>. Therefore, we believe that the composite scaffold has potential application prospects in the field of bone tissue engineering.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"1684-1698"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The application of a three-dimensional (3D)-printed biological functional scaffold in the repair of bone defects is a promising strategy. In this study, strontium-containing hydroxyapatite (SrHA) powder was synthesized by the hydrothermal method, and then poly(ε-caprolactone) (PCL)/HA and PCL/SrHA composite scaffolds were prepared by the high-temperature melt extrusion 3D printing technology. The basic physical and chemical properties, in vitro biological properties, osteogenesis, and angiogenesis abilities of the scaffold were studied. The results showed that HA and SrHA were uniformly embedded in the composite scaffold, and the scaffold exhibited a 3D interconnected porous structure and rough microsurface. The in vitro release curve showed that Sr2+ and Ca2+ were continuously released from the PCL/SrHA scaffold. In order to verify the performance of the composite scaffold in bone regeneration, the proliferation and osteogenic differentiation of mouse embryonic osteoblasts (MC3T3E1) grown on the scaffold were evaluated. The experimental results showed that the incorporation of SrHA significantly promoted cell proliferation. Compared with the PCL/HA scaffold, the PCL/SrHA scaffold could better promote cell osteogenic differentiation. Deferoxamine (DFO) was loaded on the surface of the PCL/SrHA scaffold. By studying the proliferation, angiogenesis, and expression of osteogenesis and angiogenesis-related genes of human umbilical vein endothelial cells (HUVECs) on PCL/SrHA@DFO scaffold, it was verified that DFO had the ability to promote angiogenesis. It could induce angiogenesis in vitro in combination with Sr2+. Therefore, we believe that the composite scaffold has potential application prospects in the field of bone tissue engineering.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
文献相关原料
公司名称
产品信息
阿拉丁
Strontium acetate (C4H6O4Sr·1/2H2O)
阿拉丁
Calcium acetate monohydrate (C4H8O5Ca)
阿拉丁
Disodium hydrogen phosphate (Na2HPO4)
阿拉丁
Nanohydroxyapatite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信