Development of a genetically modified full-length human respiratory syncytial virus preF protein vaccine

IF 4.5 3区 医学 Q2 IMMUNOLOGY
Geqi Lao , Jin Feng , Liping Wu , Wenhan Su , Liyun Chen , Lejun Yang , Songchen Zhang , Yuhua Xu , Tao Peng
{"title":"Development of a genetically modified full-length human respiratory syncytial virus preF protein vaccine","authors":"Geqi Lao ,&nbsp;Jin Feng ,&nbsp;Liping Wu ,&nbsp;Wenhan Su ,&nbsp;Liyun Chen ,&nbsp;Lejun Yang ,&nbsp;Songchen Zhang ,&nbsp;Yuhua Xu ,&nbsp;Tao Peng","doi":"10.1016/j.vaccine.2025.126799","DOIUrl":null,"url":null,"abstract":"<div><div>Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ALRTI) in infants, the elderly, and immunocompromised individuals. The recent approval of recombinant protein-based hRSV vaccines represents significant progress in combating hRSV. However, these vaccines utilized optimized preF ectodomain attached with an exogenous trimeric motif, which may induce immunological complications. Our research addresses these concerns by employing modified “full-length” preF proteins, preF-TMCT, designed to mimic the natural F protein structure and avoid potential immunological complications. We characterized a group of preF constructs and identified two candidates that exhibited desirable expression levels, high antigenicity and good stability. Immunization of Balb/c mice confirmed the robust immunogenicity and effective in induction of cross-reactive neutralizing antibodies of these antigens, particularly the lead-construct BR40. This investigation aims to contribute new insights to hRSV vaccine development. The near-native structure of the “full-length” preF-TMCT antigen also makes it valuable for producing therapeutic monoclonal antibodies (mAbs) and other biopharmaceuticals against hRSV infection.</div></div>","PeriodicalId":23491,"journal":{"name":"Vaccine","volume":"49 ","pages":"Article 126799"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264410X25000969","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ALRTI) in infants, the elderly, and immunocompromised individuals. The recent approval of recombinant protein-based hRSV vaccines represents significant progress in combating hRSV. However, these vaccines utilized optimized preF ectodomain attached with an exogenous trimeric motif, which may induce immunological complications. Our research addresses these concerns by employing modified “full-length” preF proteins, preF-TMCT, designed to mimic the natural F protein structure and avoid potential immunological complications. We characterized a group of preF constructs and identified two candidates that exhibited desirable expression levels, high antigenicity and good stability. Immunization of Balb/c mice confirmed the robust immunogenicity and effective in induction of cross-reactive neutralizing antibodies of these antigens, particularly the lead-construct BR40. This investigation aims to contribute new insights to hRSV vaccine development. The near-native structure of the “full-length” preF-TMCT antigen also makes it valuable for producing therapeutic monoclonal antibodies (mAbs) and other biopharmaceuticals against hRSV infection.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vaccine
Vaccine 医学-免疫学
CiteScore
8.70
自引率
5.50%
发文量
992
审稿时长
131 days
期刊介绍: Vaccine is unique in publishing the highest quality science across all disciplines relevant to the field of vaccinology - all original article submissions across basic and clinical research, vaccine manufacturing, history, public policy, behavioral science and ethics, social sciences, safety, and many other related areas are welcomed. The submission categories as given in the Guide for Authors indicate where we receive the most papers. Papers outside these major areas are also welcome and authors are encouraged to contact us with specific questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信