Enhancing quantitative coronary angiography (QCA) with advanced artificial intelligence: comparison with manual QCA and visual estimation.

Jihye Chae, Jihoon Kweon, Gyung-Min Park, Sangwoo Park, Hyuck Jun Yoon, Cheol Hyun Lee, Keunwoo Park, Hyunseol Lee, Do-Yoon Kang, Pil Hyung Lee, Soo-Jin Kang, Duk-Woo Park, Seung-Whan Lee, Young-Hak Kim, Cheol Whan Lee, Seong-Wook Park, Seung-Jung Park, Jung-Min Ahn
{"title":"Enhancing quantitative coronary angiography (QCA) with advanced artificial intelligence: comparison with manual QCA and visual estimation.","authors":"Jihye Chae, Jihoon Kweon, Gyung-Min Park, Sangwoo Park, Hyuck Jun Yoon, Cheol Hyun Lee, Keunwoo Park, Hyunseol Lee, Do-Yoon Kang, Pil Hyung Lee, Soo-Jin Kang, Duk-Woo Park, Seung-Whan Lee, Young-Hak Kim, Cheol Whan Lee, Seong-Wook Park, Seung-Jung Park, Jung-Min Ahn","doi":"10.1007/s10554-025-03342-9","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence-based quantitative coronary angiography (AI-QCA) was introduced to address manual QCA's limitations in reproducibility and correction process. The present study aimed to assess the performance of an updated AI-QCA solution (MPXA-2000) in lesion detection and quantification using manual QCA as the reference standard, and to demonstrate its superiority over visual estimation. This multi-center retrospective study analyzed 1,076 coronary angiography images obtained from 420 patients, comparing AI-QCA and visual estimation against manual QCA as the reference standard. A lesion was classified as 'detected' when the minimum lumen diameter (MLD) identified by manual QCA fell within the boundaries of the lesion delineated by AI-QCA or visual estimation. The detected lesions were evaluated in terms of diameter stenosis (DS), MLD, and lesion length (LL). AI-QCA accurately detected lesions with a sensitivity of 93% (1705/1828) and showed strong correlations with manual QCA for DS, MLD, and LL (R² = 0.65, 0.83 and 0.71, respectively). In views targeting the major vessels, the proportion of undetected lesions by AI-QCA was less than 4% (56/1492). For lesions in the side branches, AI-QCA also demonstrated high sensitivity (> 92%) in detecting them. Compared to visual estimation, AI-QCA showed significantly better lesion detection capability (93% vs. 69%, p < 0.001), and had a higher probability of detecting all lesions in images with multiple lesions (86% vs. 33%, p < 0.001). The updated AI-QCA demonstrated robust performance in lesion detection and quantification without operator intervention, enabling reproducible vessel analysis. The automated process of AI-QCA has the potential to optimize angiography-guided interventions by providing quantitative metrics.</p>","PeriodicalId":94227,"journal":{"name":"The international journal of cardiovascular imaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of cardiovascular imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10554-025-03342-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence-based quantitative coronary angiography (AI-QCA) was introduced to address manual QCA's limitations in reproducibility and correction process. The present study aimed to assess the performance of an updated AI-QCA solution (MPXA-2000) in lesion detection and quantification using manual QCA as the reference standard, and to demonstrate its superiority over visual estimation. This multi-center retrospective study analyzed 1,076 coronary angiography images obtained from 420 patients, comparing AI-QCA and visual estimation against manual QCA as the reference standard. A lesion was classified as 'detected' when the minimum lumen diameter (MLD) identified by manual QCA fell within the boundaries of the lesion delineated by AI-QCA or visual estimation. The detected lesions were evaluated in terms of diameter stenosis (DS), MLD, and lesion length (LL). AI-QCA accurately detected lesions with a sensitivity of 93% (1705/1828) and showed strong correlations with manual QCA for DS, MLD, and LL (R² = 0.65, 0.83 and 0.71, respectively). In views targeting the major vessels, the proportion of undetected lesions by AI-QCA was less than 4% (56/1492). For lesions in the side branches, AI-QCA also demonstrated high sensitivity (> 92%) in detecting them. Compared to visual estimation, AI-QCA showed significantly better lesion detection capability (93% vs. 69%, p < 0.001), and had a higher probability of detecting all lesions in images with multiple lesions (86% vs. 33%, p < 0.001). The updated AI-QCA demonstrated robust performance in lesion detection and quantification without operator intervention, enabling reproducible vessel analysis. The automated process of AI-QCA has the potential to optimize angiography-guided interventions by providing quantitative metrics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信