Abdul Baqi, Samiullah, Jadoon Khan, Asma Sadiq, Yousaf Khan, Shahid Ali, Syed Nadeem Ul Hassan Mohani, Naqeebullah Khan, Tawaf Ali Shah, Khalid S Almaary, Youssouf Ali Younous, Mohammed Bourhia
{"title":"Computational identification and experimental validation of novel <i>Saccharum officinarum</i> microRNAs along with their targets through RT-PCR approach.","authors":"Abdul Baqi, Samiullah, Jadoon Khan, Asma Sadiq, Yousaf Khan, Shahid Ali, Syed Nadeem Ul Hassan Mohani, Naqeebullah Khan, Tawaf Ali Shah, Khalid S Almaary, Youssouf Ali Younous, Mohammed Bourhia","doi":"10.1080/15592324.2025.2452334","DOIUrl":null,"url":null,"abstract":"<p><p>Various metabolic and cell signaling processes impact the functions of sugarcane plant cells. MicroRNAs (miRNAs) play critical regulatory roles in enhancing yield and providing protection against various stressors. This study seeks to identify and partially characterize several novel miRNAs in sugarcane using <i>in silico</i> tools, while also offering a preliminary assessment of their functions. This was accomplished by predicting novel conserved miRNAs in sugarcane plants using a variety of genomics-based techniques like BLASTn, MFOLD, psRNA Target, sequence logo, Weblogo, primer-3, etc. and annotated using miRBase and NCBI. For validation, RT-PCR method was used along with agarose gel. After the preparation of fourteen randomly chosen primers, they were validated by RT-PCR. Accordingly, they contain fifty specific targeted proteins with substantial targets in the structural, transcriptional protein, etc. Furthermore, the sof-miR5025a directs the heat repeat protein while the voltage-dependent anion is governed by sof-miR8005a. Similarly, the sof-miR7768b and sof-miR6249b monitor the pathogenesis-related protein and zinc finger, C<sub>2</sub>H<sub>2</sub> type protein, which assist as transcription factors. Thus, the novel sugarcane miRNAs target a wide range of important genes help regulate the environment for sugarcane to generate a higher-quality crop.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2452334"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2025.2452334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Various metabolic and cell signaling processes impact the functions of sugarcane plant cells. MicroRNAs (miRNAs) play critical regulatory roles in enhancing yield and providing protection against various stressors. This study seeks to identify and partially characterize several novel miRNAs in sugarcane using in silico tools, while also offering a preliminary assessment of their functions. This was accomplished by predicting novel conserved miRNAs in sugarcane plants using a variety of genomics-based techniques like BLASTn, MFOLD, psRNA Target, sequence logo, Weblogo, primer-3, etc. and annotated using miRBase and NCBI. For validation, RT-PCR method was used along with agarose gel. After the preparation of fourteen randomly chosen primers, they were validated by RT-PCR. Accordingly, they contain fifty specific targeted proteins with substantial targets in the structural, transcriptional protein, etc. Furthermore, the sof-miR5025a directs the heat repeat protein while the voltage-dependent anion is governed by sof-miR8005a. Similarly, the sof-miR7768b and sof-miR6249b monitor the pathogenesis-related protein and zinc finger, C2H2 type protein, which assist as transcription factors. Thus, the novel sugarcane miRNAs target a wide range of important genes help regulate the environment for sugarcane to generate a higher-quality crop.