Mathias Holtkamp, Vicky Parmar, René Hosch, Luca Salhöfer, Hanna Styczen, Yan Li, Marcel Opitz, Martin Glas, Nika Guberina, Karsten Wrede, Cornelius Deuschl, Michael Forsting, Felix Nensa, Lale Umutlu, Johannes Haubold
{"title":"AI-guided virtual biopsy: Automated differentiation of cerebral gliomas from other benign and malignant MRI findings using deep learning.","authors":"Mathias Holtkamp, Vicky Parmar, René Hosch, Luca Salhöfer, Hanna Styczen, Yan Li, Marcel Opitz, Martin Glas, Nika Guberina, Karsten Wrede, Cornelius Deuschl, Michael Forsting, Felix Nensa, Lale Umutlu, Johannes Haubold","doi":"10.1093/noajnl/vdae225","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to develop an automated algorithm to noninvasively distinguish gliomas from other intracranial pathologies, preventing misdiagnosis and ensuring accurate analysis before further glioma assessment.</p><p><strong>Methods: </strong>A cohort of 1280 patients with a variety of intracranial pathologies was included. It comprised 218 gliomas (mean age 54.76 ± 13.74 years; 136 males, 82 females), 514 patients with brain metastases (mean age 59.28 ± 12.36 years; 228 males, 286 females), 366 patients with inflammatory lesions (mean age 41.94 ± 14.57 years; 142 males, 224 females), 99 intracerebral hemorrhages (mean age 62.68 ± 16.64 years; 56 males, 43 females), and 83 meningiomas (mean age 63.99 ± 13.31 years; 25 males, 58 females). Radiomic features were extracted from fluid-attenuated inversion recovery (FLAIR), contrast-enhanced, and noncontrast T1-weighted MR sequences. Subcohorts, with 80% for training and 20% for testing, were established for model validation. Machine learning models, primarily XGBoost, were trained to distinguish gliomas from other pathologies.</p><p><strong>Results: </strong>The study demonstrated promising results in distinguishing gliomas from various intracranial pathologies. The best-performing model consistently achieved high area-under-the-curve (AUC) values, indicating strong discriminatory power across multiple distinctions, including gliomas versus metastases (AUC = 0.96), gliomas versus inflammatory lesions (AUC = 1.0), gliomas versus intracerebral hemorrhages (AUC = 0.99), gliomas versus meningiomas (AUC = 0.98). Additionally, across all these entities, gliomas had an AUC of 0.94.</p><p><strong>Conclusions: </strong>The study presents an automated approach that effectively distinguishes gliomas from common intracranial pathologies. This can serve as a quality control upstream to further artificial-intelligence-based genetic analysis of cerebral gliomas.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"7 1","pages":"vdae225"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773384/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study aimed to develop an automated algorithm to noninvasively distinguish gliomas from other intracranial pathologies, preventing misdiagnosis and ensuring accurate analysis before further glioma assessment.
Methods: A cohort of 1280 patients with a variety of intracranial pathologies was included. It comprised 218 gliomas (mean age 54.76 ± 13.74 years; 136 males, 82 females), 514 patients with brain metastases (mean age 59.28 ± 12.36 years; 228 males, 286 females), 366 patients with inflammatory lesions (mean age 41.94 ± 14.57 years; 142 males, 224 females), 99 intracerebral hemorrhages (mean age 62.68 ± 16.64 years; 56 males, 43 females), and 83 meningiomas (mean age 63.99 ± 13.31 years; 25 males, 58 females). Radiomic features were extracted from fluid-attenuated inversion recovery (FLAIR), contrast-enhanced, and noncontrast T1-weighted MR sequences. Subcohorts, with 80% for training and 20% for testing, were established for model validation. Machine learning models, primarily XGBoost, were trained to distinguish gliomas from other pathologies.
Results: The study demonstrated promising results in distinguishing gliomas from various intracranial pathologies. The best-performing model consistently achieved high area-under-the-curve (AUC) values, indicating strong discriminatory power across multiple distinctions, including gliomas versus metastases (AUC = 0.96), gliomas versus inflammatory lesions (AUC = 1.0), gliomas versus intracerebral hemorrhages (AUC = 0.99), gliomas versus meningiomas (AUC = 0.98). Additionally, across all these entities, gliomas had an AUC of 0.94.
Conclusions: The study presents an automated approach that effectively distinguishes gliomas from common intracranial pathologies. This can serve as a quality control upstream to further artificial-intelligence-based genetic analysis of cerebral gliomas.