DeST-OT: Alignment of spatiotemporal transcriptomics data.

Cell systems Pub Date : 2025-02-19 Epub Date: 2025-01-27 DOI:10.1016/j.cels.2024.12.001
Peter Halmos, Xinhao Liu, Julian Gold, Feng Chen, Li Ding, Benjamin J Raphael
{"title":"DeST-OT: Alignment of spatiotemporal transcriptomics data.","authors":"Peter Halmos, Xinhao Liu, Julian Gold, Feng Chen, Li Ding, Benjamin J Raphael","doi":"10.1016/j.cels.2024.12.001","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomics (SRT) measures mRNA transcripts at thousands of locations within a tissue slice, revealing spatial variations in gene expression and cell types. SRT has been applied to tissue slices from multiple time points during the development of an organism. We introduce developmental spatiotemporal optimal transport (DeST-OT), a method to align spatiotemporal transcriptomics data using optimal transport (OT). DeST-OT uses semi-relaxed OT to model cellular growth, death, and differentiation processes. We also derive a growth distortion metric and a migration metric to quantify the plausibility of spatiotemporal alignments. DeST-OT outperforms existing methods on the alignment of spatiotemporal transcriptomics data from developing mouse kidney and axolotl brain. DeST-OT estimated growth rates also provide insights into the gene expression programs governing the growth and differentiation of cells over space and time.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101160"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972451/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.12.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially resolved transcriptomics (SRT) measures mRNA transcripts at thousands of locations within a tissue slice, revealing spatial variations in gene expression and cell types. SRT has been applied to tissue slices from multiple time points during the development of an organism. We introduce developmental spatiotemporal optimal transport (DeST-OT), a method to align spatiotemporal transcriptomics data using optimal transport (OT). DeST-OT uses semi-relaxed OT to model cellular growth, death, and differentiation processes. We also derive a growth distortion metric and a migration metric to quantify the plausibility of spatiotemporal alignments. DeST-OT outperforms existing methods on the alignment of spatiotemporal transcriptomics data from developing mouse kidney and axolotl brain. DeST-OT estimated growth rates also provide insights into the gene expression programs governing the growth and differentiation of cells over space and time.

est - ot:时空转录组学数据比对。
空间分辨转录组学(SRT)测量组织切片内数千个位置的mRNA转录物,揭示基因表达和细胞类型的空间变化。SRT已被应用于生物体发育过程中多个时间点的组织切片。我们介绍了发育时空最佳传输(DeST-OT),这是一种使用最佳传输(OT)对齐时空转录组学数据的方法。DeST-OT使用半松弛OT来模拟细胞生长、死亡和分化过程。我们还推导了一个增长扭曲度量和一个迁移度量来量化时空排列的合理性。DeST-OT在发育中的小鼠肾脏和蝾螈脑的时空转录组学数据比对方面优于现有方法。DeST-OT估计的生长速率还提供了对控制细胞在空间和时间上生长和分化的基因表达程序的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信