Metagenomic analysis of pristine oil sheds new light on the global distribution of microbial genetic repertoire in hydrocarbon-associated ecosystems.

microLife Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.1093/femsml/uqae027
Julia Plewka, Armando Alibrandi, Till L V Bornemann, Sarah P Esser, Tom L Stach, Katharina Sures, Jannis Becker, Cristina Moraru, André Soares, Rolando di Primio, Jens Kallmeyer, Alexander J Probst
{"title":"Metagenomic analysis of pristine oil sheds new light on the global distribution of microbial genetic repertoire in hydrocarbon-associated ecosystems.","authors":"Julia Plewka, Armando Alibrandi, Till L V Bornemann, Sarah P Esser, Tom L Stach, Katharina Sures, Jannis Becker, Cristina Moraru, André Soares, Rolando di Primio, Jens Kallmeyer, Alexander J Probst","doi":"10.1093/femsml/uqae027","DOIUrl":null,"url":null,"abstract":"<p><p>Oil reservoirs are society's primary source of hydrocarbons. While microbial communities in industrially exploited oil reservoirs have been investigated in the past, pristine microbial communities in untapped oil reservoirs are little explored, as are distribution patterns of respective genetic signatures. Here, we show that a pristine oil sample contains a complex community consisting of bacteria and fungi for the degradation of hydrocarbons. We identified microorganisms and their pathways for the degradation of methane, <i>n</i>-alkanes, mono-aromatic, and polycyclic aromatic compounds in a metagenome retrieved from biodegraded petroleum encountered in a subsurface reservoir in the Barents Sea. Capitalizing on marker genes from metagenomes and public data mining, we compared the prokaryotes, putative viruses, and putative plasmids of the sampled site to those from 10 other hydrocarbon-associated sites, revealing a shared network of species and genetic elements across the globe. To test for the potential dispersal of the microbes and predicted elements via seawater, we compared our findings to the Tara Ocean dataset, resulting in a broad distribution of prokaryotic and viral signatures. Although frequently shared between hydrocarbon-associated sites, putative plasmids, however, showed little coverage in the Tara Oceans dataset, suggesting an undiscovered mode of transfer between hydrocarbon-affected ecosystems. Based on our analyses, genetic information is globally shared between oil reservoirs and hydrocarbon-associated sites, and we propose that currents and other physical occurrences within the ocean along with deep aquifers are major distributors of prokaryotes and viruses into these subsurface ecosystems.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"6 ","pages":"uqae027"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774207/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqae027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oil reservoirs are society's primary source of hydrocarbons. While microbial communities in industrially exploited oil reservoirs have been investigated in the past, pristine microbial communities in untapped oil reservoirs are little explored, as are distribution patterns of respective genetic signatures. Here, we show that a pristine oil sample contains a complex community consisting of bacteria and fungi for the degradation of hydrocarbons. We identified microorganisms and their pathways for the degradation of methane, n-alkanes, mono-aromatic, and polycyclic aromatic compounds in a metagenome retrieved from biodegraded petroleum encountered in a subsurface reservoir in the Barents Sea. Capitalizing on marker genes from metagenomes and public data mining, we compared the prokaryotes, putative viruses, and putative plasmids of the sampled site to those from 10 other hydrocarbon-associated sites, revealing a shared network of species and genetic elements across the globe. To test for the potential dispersal of the microbes and predicted elements via seawater, we compared our findings to the Tara Ocean dataset, resulting in a broad distribution of prokaryotic and viral signatures. Although frequently shared between hydrocarbon-associated sites, putative plasmids, however, showed little coverage in the Tara Oceans dataset, suggesting an undiscovered mode of transfer between hydrocarbon-affected ecosystems. Based on our analyses, genetic information is globally shared between oil reservoirs and hydrocarbon-associated sites, and we propose that currents and other physical occurrences within the ocean along with deep aquifers are major distributors of prokaryotes and viruses into these subsurface ecosystems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信