Machine-Learning Predictions of Cochlear Implant Functional Outcomes: A Systematic Review.

IF 2.6 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY
Jonathan T Mo, Davis S Chong, Cynthia Sun, Nikita Mohapatra, Nicole T Jiam
{"title":"Machine-Learning Predictions of Cochlear Implant Functional Outcomes: A Systematic Review.","authors":"Jonathan T Mo, Davis S Chong, Cynthia Sun, Nikita Mohapatra, Nicole T Jiam","doi":"10.1097/AUD.0000000000001638","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Cochlear implant (CI) user functional outcomes are challenging to predict because of the variability in individual anatomy, neural health, CI device characteristics, and linguistic and listening experience. Machine learning (ML) techniques are uniquely poised for this predictive challenge because they can analyze nonlinear interactions using large amounts of multidimensional data. The objective of this article is to systematically review the literature regarding ML models that predict functional CI outcomes, defined as sound perception and production. We analyze the potential strengths and weaknesses of various ML models, identify important features for favorable outcomes, and suggest potential future directions of ML applications for CI-related clinical and research purposes.</p><p><strong>Design: </strong>We conducted a systematic literature search with Web of Science, Scopus, MEDLINE, EMBASE, CENTRAL, and CINAHL from the date of inception through September 2024. We included studies with ML models predicting a CI functional outcome, defined as those pertaining to sound perception and production, and excluded simulation studies and those involving patients without CIs. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we extracted participant population, CI characteristics, ML model, and performance data. Sixteen studies examining 5058 pediatric and adult CI users (range: 4 to 2489) were included from an initial 1442 publications.</p><p><strong>Results: </strong>Studies predicted heterogeneous outcome measures pertaining to sound production (5 studies), sound perception (12 studies), and language (2 studies). ML models use a variety of prediction features, including demographic, audiological, imaging, and subjective measures. Some studies highlighted predictors beyond traditional CI audiometric outcomes, such as anatomical and imaging characteristics (e.g., vestibulocochlear nerve area, brain regions unaffected by auditory deprivation), health system factors (e.g., wait time to referral), and patient-reported measures (e.g., dizziness and tinnitus questionnaires). Used ML models were tree-based, kernel-based, instance-based, probabilistic, or neural networks, with validation and test methods most commonly being k-fold cross-validation and train-test split. Various statistical measures were used to evaluate model performance, however, for studies reporting accuracy, the best-performing models for each study ranged from 71.0% to 98.83%.</p><p><strong>Conclusions: </strong>ML models demonstrate high predictive performance and illuminate factors that contribute to CI user functional outcomes. While many models showed favorable evaluation statistics, the majority were not adequately reported with regard to dataset characteristics, model creation, and validation. Furthermore, the extent of overfitting in these models is unclear and will likely result in poor generalization to new data. This suggests the need for more robust validation procedures and standardization in reporting, with the ultimate hope that the iterative improvement of these models will allow for their adoption as a future clinical tool.</p>","PeriodicalId":55172,"journal":{"name":"Ear and Hearing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ear and Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/AUD.0000000000001638","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Cochlear implant (CI) user functional outcomes are challenging to predict because of the variability in individual anatomy, neural health, CI device characteristics, and linguistic and listening experience. Machine learning (ML) techniques are uniquely poised for this predictive challenge because they can analyze nonlinear interactions using large amounts of multidimensional data. The objective of this article is to systematically review the literature regarding ML models that predict functional CI outcomes, defined as sound perception and production. We analyze the potential strengths and weaknesses of various ML models, identify important features for favorable outcomes, and suggest potential future directions of ML applications for CI-related clinical and research purposes.

Design: We conducted a systematic literature search with Web of Science, Scopus, MEDLINE, EMBASE, CENTRAL, and CINAHL from the date of inception through September 2024. We included studies with ML models predicting a CI functional outcome, defined as those pertaining to sound perception and production, and excluded simulation studies and those involving patients without CIs. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we extracted participant population, CI characteristics, ML model, and performance data. Sixteen studies examining 5058 pediatric and adult CI users (range: 4 to 2489) were included from an initial 1442 publications.

Results: Studies predicted heterogeneous outcome measures pertaining to sound production (5 studies), sound perception (12 studies), and language (2 studies). ML models use a variety of prediction features, including demographic, audiological, imaging, and subjective measures. Some studies highlighted predictors beyond traditional CI audiometric outcomes, such as anatomical and imaging characteristics (e.g., vestibulocochlear nerve area, brain regions unaffected by auditory deprivation), health system factors (e.g., wait time to referral), and patient-reported measures (e.g., dizziness and tinnitus questionnaires). Used ML models were tree-based, kernel-based, instance-based, probabilistic, or neural networks, with validation and test methods most commonly being k-fold cross-validation and train-test split. Various statistical measures were used to evaluate model performance, however, for studies reporting accuracy, the best-performing models for each study ranged from 71.0% to 98.83%.

Conclusions: ML models demonstrate high predictive performance and illuminate factors that contribute to CI user functional outcomes. While many models showed favorable evaluation statistics, the majority were not adequately reported with regard to dataset characteristics, model creation, and validation. Furthermore, the extent of overfitting in these models is unclear and will likely result in poor generalization to new data. This suggests the need for more robust validation procedures and standardization in reporting, with the ultimate hope that the iterative improvement of these models will allow for their adoption as a future clinical tool.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ear and Hearing
Ear and Hearing 医学-耳鼻喉科学
CiteScore
5.90
自引率
10.80%
发文量
207
审稿时长
6-12 weeks
期刊介绍: From the basic science of hearing and balance disorders to auditory electrophysiology to amplification and the psychological factors of hearing loss, Ear and Hearing covers all aspects of auditory and vestibular disorders. This multidisciplinary journal consolidates the various factors that contribute to identification, remediation, and audiologic and vestibular rehabilitation. It is the one journal that serves the diverse interest of all members of this professional community -- otologists, audiologists, educators, and to those involved in the design, manufacture, and distribution of amplification systems. The original articles published in the journal focus on assessment, diagnosis, and management of auditory and vestibular disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信