Overexpression of Drosophila NUAK or Constitutively-Active Formin-Like Promotes the Formation of Aberrant Myofibrils.

Prabhat Tiwari, David Brooks, Erika R Geisbrecht
{"title":"Overexpression of Drosophila NUAK or Constitutively-Active Formin-Like Promotes the Formation of Aberrant Myofibrils.","authors":"Prabhat Tiwari, David Brooks, Erika R Geisbrecht","doi":"10.1002/cm.21999","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle development and maintenance is central to the normal functioning of animals. Muscle tissues exhibit high levels of activity and require the dynamic turnover of proteins. An actomyosin scaffold functions with additional proteins comprising the basic contractile subunit of striated muscle, known as the sarcomere. Drosophila muscles are similar to vertebrate muscles in composition and they share a similar mechanism of development. Drosophila NUAK (NUAK) is the homolog of NUAK1 and NUAK2 in vertebrates. NUAK belongs to the family of AMP-activated protein kinases (AMPKs), a group of proteins with broad and overlapping cellular targets. Here we confirm that NUAK dynamically modulates larval muscle sarcomere size as upregulation of NUAK produces longer sarcomeres, including increased thin filament lengths. Furthermore, NUAK overexpression results in aberrant myofibers above the nuclei plane, upregulation of Formin-like (Frl), and an increase in newly synthesized proteins at sites consistent with actin filament assembly. Expression of constitutively-active Frl also produces aberrant myofibers similar to NUAK overexpression. These results taken together strongly suggest a functional link between NUAK and Frl in myofibril formation in an in vivo setting.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cm.21999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Muscle development and maintenance is central to the normal functioning of animals. Muscle tissues exhibit high levels of activity and require the dynamic turnover of proteins. An actomyosin scaffold functions with additional proteins comprising the basic contractile subunit of striated muscle, known as the sarcomere. Drosophila muscles are similar to vertebrate muscles in composition and they share a similar mechanism of development. Drosophila NUAK (NUAK) is the homolog of NUAK1 and NUAK2 in vertebrates. NUAK belongs to the family of AMP-activated protein kinases (AMPKs), a group of proteins with broad and overlapping cellular targets. Here we confirm that NUAK dynamically modulates larval muscle sarcomere size as upregulation of NUAK produces longer sarcomeres, including increased thin filament lengths. Furthermore, NUAK overexpression results in aberrant myofibers above the nuclei plane, upregulation of Formin-like (Frl), and an increase in newly synthesized proteins at sites consistent with actin filament assembly. Expression of constitutively-active Frl also produces aberrant myofibers similar to NUAK overexpression. These results taken together strongly suggest a functional link between NUAK and Frl in myofibril formation in an in vivo setting.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信