Dimethyl fumarate alleviate hepatic ischemia–reperfusion injury through suppressing cGAS-STING signaling

IF 10.7 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
MedComm Pub Date : 2025-01-28 DOI:10.1002/mco2.70077
Yi Xiong, Jiawen Chen, Kun Li, Wei Liang, Jinwen Song, Xiusheng Qiu, Baoyu Zhang, Dongbo Qiu, Yunfei Qin
{"title":"Dimethyl fumarate alleviate hepatic ischemia–reperfusion injury through suppressing cGAS-STING signaling","authors":"Yi Xiong,&nbsp;Jiawen Chen,&nbsp;Kun Li,&nbsp;Wei Liang,&nbsp;Jinwen Song,&nbsp;Xiusheng Qiu,&nbsp;Baoyu Zhang,&nbsp;Dongbo Qiu,&nbsp;Yunfei Qin","doi":"10.1002/mco2.70077","DOIUrl":null,"url":null,"abstract":"<p>Hepatic ischemia–reperfusion (I/R) injury frequently occurs during the perioperative phase of liver surgery. Inappropriate activation of STING signaling can trigger excessive inflammation response to aggravate hepatic I/R injury. Dimethyl fumarate (DMF) is an FDA-approved immunomodulatory drug used to treat multiple sclerosis and psoriasis due to its notable anti-inflammation properties. However, the mechanism and targets of DMF in immunomodulation remain unclear. Here, we found that DMF suppresses cGAS-STING activation induced by HSV-1, hering testis DNA, and mitochondrial DNA in a variety of cells. DMF significantly reduces hepatic I/R injury and inhibits cGAS-STING pathway activation in mice. The alleviating effect of DMF on hepatic I/R injury was negligible in STING-knockout mice. Mechanistically, DMF directly inhibits STING activation via an autophagy-independent pathway, and the immunocoprecipitation experiment showed that DMF inhibited STING recruitment of downstream TBK1 and IRF3. Our study found that DMF protects liver I/R injury by inhibiting the STING pathway and may be a potential target of this disease.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 2","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatic ischemia–reperfusion (I/R) injury frequently occurs during the perioperative phase of liver surgery. Inappropriate activation of STING signaling can trigger excessive inflammation response to aggravate hepatic I/R injury. Dimethyl fumarate (DMF) is an FDA-approved immunomodulatory drug used to treat multiple sclerosis and psoriasis due to its notable anti-inflammation properties. However, the mechanism and targets of DMF in immunomodulation remain unclear. Here, we found that DMF suppresses cGAS-STING activation induced by HSV-1, hering testis DNA, and mitochondrial DNA in a variety of cells. DMF significantly reduces hepatic I/R injury and inhibits cGAS-STING pathway activation in mice. The alleviating effect of DMF on hepatic I/R injury was negligible in STING-knockout mice. Mechanistically, DMF directly inhibits STING activation via an autophagy-independent pathway, and the immunocoprecipitation experiment showed that DMF inhibited STING recruitment of downstream TBK1 and IRF3. Our study found that DMF protects liver I/R injury by inhibiting the STING pathway and may be a potential target of this disease.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信